Какое уравнение называется уравнением данной линии. Параметрические уравнения линии

Равенство вида F(x, y) = 0 называется уравнением с двумя переменными x , у, если оно справедливо не для всяких пар чисел х, у. Говорят, что два числа x = x 0 , у=у 0, удовлетворяют некоторому уравнению вида F(х, у)=0, если при подстановке этих чисел вместо переменных х и у в уравнение его левая часть обращается в нуль.

Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты каждой точки, не лежащей на ней.

В дальнейшем вместо выражения «дано уравнение линии F(х, у) = 0» мы часто будем говорить короче: дана линия F (х, у) = 0.

Если даны уравнения двух линий F (х, у) = 0 и Ф(х, y) = Q, то совме­стное решение системы

даёт все точки их пересечения. Точнее, каждая пара чисел, являющаяся сов­местным решением этой системы, определяет одну из точек пересечения.

*) В тех случаях, когда система координат не названа, подразумевается, что она - декартова прямоугольная.

157. Даны точки *) M 1 (2; - 2), M 2 (2; 2), M 3 (2; - 1), M 4 (3; -3), M 5 (5; -5), M 6 (3; -2). Установить, какие изданных точек лежат на линии, определённой уравнением х + у = 0, и какие не лежат на ней. Какая линия определена данным уравнением? (Изобразить её на чертеже.)

158. На линии, определённой уравнением х 2 +y 2 =25, найти точки, абсциссы которых равны следующим числам: а) 0, б) - 3, в) 5, г) 7; на этой же линии найти точки, ординаты которых равны следующим числам: д) 3, е) - 5, ж) - 8. Какая линия определена данным уравнением? (Изобразить её на чертеже.)

159. Установить, какие линии определяются следующими уравне­ниями (построить их на чертеже):

1) х - у = 0; 2) х + у = 0; 3) x - 2 = 0; 4) x + 3 = 0;

5) у - 5 = 0; 6) y + 2 = 0; 7) x = 0; 8) y = 0;

9) x 2 - xy = 0; 10) xy + y 2 = 0; 11) x 2 - y 2 = 0; 12) xy = 0;

13) y 2 - 9 = 0; 14) xy 2 - 8 xy +15 = 0; 15) y 2 +5y+4 = 0;

16) х 2 у - 7ху + 10y = 0; 17) у = |x |; 18) х = |у |; 19) y + |x |=0;

20) х + |у |= 0; 21) у = |х- 1|; 22) y = |x + 2|; 23) х 2 + у 2 = 16;

24) (x -2) 2 +(y -1) 2 =16; 25) (x + 5) 2 +(y - 1) 2 = 9;

26) (х - 1) 2 + y 2 = 4; 27) x 2 +(y + 3) 2 = 1; 28) (x -3) 2 + y 2 = 0;

29) х 2 + 2y 2 = 0; 30) 2 х 2 + 3y 2 + 5 = 0

31) (x - 2) 2 + (y + 3) 2 + 1=0.

160.Даны линии:

1) х + у = 0; 2) х - у = 0; 3) x 2 + y 2 - 36 = 0;

4) x 2 +y 2 -2x ==0; 5) x 2 +y 2 + 4x -6y -1 =0.

Определить, какие из них проходят через начало координат.

161.Даны линии:

1) x 2 + y 2 = 49; 2) (x - 3) 2 + (y + 4) 2 = 25;

3) (x + 6) 2 + (y - 3) 2 = 25; 4) (x + 5) 2 + (y - 4) 2 = 9;

5) x 2 + y 2 - 12х + 16у = 0; 6) x 2 + y 2 - 2х + 8у + 7 = 0;

7) x 2 + y 2 - 6х + 4у + 12 = 0.

Найти точки их пересечения: а) с осью Ох; б) с осью Оу.

162.Найти точки пересечения двух линий;

1) х 2 2 = 8, х-у = 0;

2) х 2 2 -16x +4у +18 = 0, х + у = 0;

3) х 2 2 -2x +4у -3 = 0, х 2 + у 2 = 25;

4) х 2 2 -8x +10у+40 = 0, х 2 + у 2 = 4.

163. В полярной системе координат даны точки

М 1 (1; ), М 2 (2; 0), М 3 (2; )

М 4 (
;) и М 5 (1; )

Установить, какие из этих точек лежат на линии, определённой уравнением в полярных координатах  = 2 cos , и какие не лежат на ней. Какая линия определяется данным уравнением? (Изобразить её на чертеже:)

164. На линии, определённой уравнением  = , найти точки, полярные углы которых равны следующим числам: а) ,б) -, в) 0,г) . Какая линия определена данным уравнением?

(Построить её на чертеже.)

165.На линии, определённой уравнением  = , найти точки,полярные радиусы которых равны следующим числам: а) 1, б) 2,в)
. Какая линия определена данным уравнением? (Построить её на чертеже.)

166.Установить, какие линии определяются в полярных коор­динатах следующими уравнениями (построить их на чертеже):

1)  = 5; 2)  = ; 3)  = ; 4)  cos  = 2; 5)  sin  = 1;

6)  = 6 cos ; 7)  = 10 sin ; 8) sin  = 9) sin  =

167.Построить на чертеже следующие спирали Архимеда:

1)  = 5, 2)  = 5; 3)  = ; 4)р = -1.

168. Построить на чертеже следующие гиперболические спирали:

1)  = ; 2) = ; 3) = ; 4) = -.

169. Построить на чертеже следующие логарифмические спирали:

,
.

170.Определить длины отрезков, на которые рассекает спиральАрхимеда

луч, выходящий из полюса и наклонённый к полярной оси под углом
. Сделать чертёж.

171. На спирали Архимеда
взята точка С, полярный радиус которой равен 47. Определить, на сколько частей эта спираль рассекает полярный радиус точки С, Сделать чертёж.

172. На гиперболической спирали
найти точку Р, полярный радиус которой равен 12. Сделать чертёж.

173. На логарифмической спирали
найти точку Q, полярный радиус которой равен 81. Сделать чертёж.

Цель: Рассмотреть понятие линии на плоскости, привести примеры. Основываясь на определение линии, ввести понятие уравнения прямой на плоскости. Рассмотреть виды прямой, привести примеры и способы задания прямой. Закрепить умение переводить уравнение прямой из общего вида в уравнение прямой «в отрезках», с угловым коэффициентом.

  1. Уравнение линии на плоскости.
  2. Уравнение прямой на плоскости. Виды уравнений.
  3. Способы задания прямой.

1. Пусть х и у – две произвольные переменные.

Определение : Соотношение вида F(x,y)=0 называется уравнением , если оно справедливо не для всяких пар чисел х и у.

Пример : 2х + 7у – 1 = 0 , х 2 + y 2 – 25 = 0.

Если равенство F(x,y)=0 выполняется для любых х, у, то, следовательно, F(x,y) = 0 – тождество.

Пример: (х + у) 2 - х 2 - 2ху - у 2 = 0

Говорят, что числа х 0 и у 0 удовлетворяют уравнению , если при их подстановке в это уравнение оно обращается в верное равенство.

Важнейшим понятием аналитической геометрии является понятие уравнения линии.

Определение : Уравнением данной линии называется уравнение F(x,y)=0, которому удовлетворяют координаты всех точек, лежащих на этой линии, и не удовлетворяют координаты никакой из точек, не лежащих на этой линии.

Линия, определяемая уравнением y = f(x), называется графиком функции f(x). Переменные х и у – называются текущими координатами, т. к. являются координатами переменной точки.

Несколько примеров определения линий.

1) х – у = 0 => х = у. Это уравнение определяет прямую:

2) х 2 - у 2 = 0 => (х-у)(х+у) = 0 => точки должны удовлетворять либо уравнению х - у = 0, либо уравнению х + у = 0, что соответствует на плоскости паре пересекающихся прямых, являющихся биссектрисами координатных углов:

3) х 2 + у 2 = 0. Этому уравнению удовлетворяет только одна точка О(0,0).

2. Определение: Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких–либо заданных начальных условий.

Уравнение прямой с угловым коэффициентом.



Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

xcosj + ysinj - p = 0 –нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

3. Уравнение прямой по точке и угловому коэффициенту.

Пусть угловой коэффициент прямой равен k, прямая проходит через точку М(х 0 , у 0). Тогда уравнение прямой находится по формуле: у – у 0 = k(x – x 0)

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.

Прямая на плоскости и в пространстве.

Изучение свойств геометрических фигур с помощью алгебры носит название аналитической геометрии , а использовать при этом мы будем так называемый метод координат .

Линия на плоскости обычно задается как множество точек, которые обладают присущими только им свойствами. Тот факт, что координаты (числа) х и у точки, лежащей на этой линии, аналитически записываются в виде некоторого уравнения.

Опр.1Уравнением линии (уравнением кривой) на плоскости Оху называется уравнение (*), которому удовлетворяют координаты х и у каждой точки данной линии и не удовлетворяют координаты любой другой точки, не лежащей на этой линии.

Из определения 1 следует, что всякой линии на плоскости соответствует некоторое уравнение между текущими координатами (х,у ) точки этой линии и наоборот, всякому уравнению соответствует, вообще говоря, некоторая линия.

Отсюда возникают две основные задачи аналитической геометрии на плоскости.

1.Дана линия в виде множества точек. Нужно составить уравнение этой линии.

2. Дано уравнение линии. Необходимо изучить ее геометрические свойства (форму и расположение).

Пример . Лежат ли точки А (-2;1) и В (1;1) на линии 2х +у +3=0?

Задача о нахождении точек пересечения двух линий, заданных уравнениями и, сводится к отысканию координат, которые удовлетворяют уравнению обеих линий, т.е. к решению системы из двух уравнений с двумя неизвестными.

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогично вводится понятие линии в ПСК.

Линию на плоскости можно задать двумя уравнениями

где х и у – произвольные координаты точки М(х;у), лежащей на данной линии, а t - переменная, называемая параметром , параметр определяет положение точки на плоскости.

Например, если , то значению параметра t=2 соответствует на плоскости точка (3;4).

Если параметр изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способом задания линии называется параметрическим, а уравнение (5.1) –параметрическим уравнением линии.

Чтобы перейти от параметрических уравнений к общему уравнению (*), надо каким – либо способом из двух уравнений исключают параметр. Однако, заметим, такой переход не всегда целесообразен и не всегда возможен.

Линию на плоскости можно задать векторным уравнением , где t- скалярный переменный параметр. Каждому значению параметра соответствует определенный вектор плоскости. При изменении параметра конец вектора опишет некоторую линию.

Векторному уравнению в ДСК соответствуетдва скалярных уравнения

(5.1), т.е. уравнения проекций на оси координат векторного уравнения линии есть ее



параметрическое уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , а линия – траектория точки, параметр t при этом есть время.

Вывод: всякой линии на плоскости соответствует уравнение вида .

ВСЯКОМУ УРАВНЕНИЮ ВИДАсоответствует в общем случае некоторая линия, свойства которой определяются данным уравнением (исключение – уравнению на плоскости не соответствует никакой геометрический образ).

Пусть выбрана система координат на плоскости.

Опр. 5.1. Уравнением линии называется такое уравнение вида F(x;y) =0, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней.

Уравнение вида F(x;y )=0 – называют общим уравнением линии или уравнением в неявной форме.

Таким образом, линия Г есть геометрическое место точек, удовлетворяющее данному уравнению Г={(x, y): F(x;y)=0}.

Линию называют также кривой.

Давайте повторим * Какое уравнение называется квадратным? * Какие уравнения называются неполными квадратными уравнениями? * Какое квадратное уравнение называется приведенным? * Что называют корнем квадратного уравнения? * Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение?
















Алгоритм решения квадратного уравнения: 1. Опредилить каким способом рациональней решить квадратное уравнение 2. Выбрать наиболее рациональный способ решения 3. Определение количества корней квадратного уравнения 4. Нахождение корней квадратного уравнения Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу…






Дополнительное условие Уравнение Корни Примеры 1. в = с = 0, а 0 ах 2 = 0 х 1 = 0 2. с = 0, а 0, в 0 ах 2 + bх = 0 х 1 = 0, х 2 =-b/а 3. в = 0, а 0, в 0 ах 2 + с = 0 а) х 1,2 = ±(c/а), где с/а 0. б) если с/а 0, то решений нет 4. а 0 ах 2 + bх + с = 0 x 1,2 =(-b±D)/2 а, где D = в 2 – 4 ас, D0 5. в – четное число (в = 2k), а 0, в 0, с 0 ах 2 + 2kx + c = 0 х 1,2 =(-b±D)/а, D 1 = k 2 – ac, где k = 6. Теорема обратная теореме Виета x 2 + px + q = 0x 1 + x 2 = - p x 1 x 2 = q


II. Специальные методы 7. Метод выделения квадрата двучлена. Цель: Привести уравнение общего вида к неполному квадратному уравнению. Замечание: метод применим для любых квадратных уравнений, но не всегда удобен в использовании. Используется для доказательства формулы корней квадратного уравнения. Пример: решите уравнение х 2 -6 х+8=0 8. Метод «переброски» старшего коэффициента. Корни квадратных уравнений ax 2 + bx + c = 0 и y 2 +by+ac=0 связаны соотношениями: и Замечание: метод хорош для квадратных уравнений с «удобными» коэффициентами. В некоторых случаях позволяет решить квадратное уравнение устно. Пример: решите уравнение 2 х 2 -9 х-5=0 На основании теорем:Пример: решите уравнение 157 х х-177=0 9. Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен с /а 10. Если в квадратном уравнении a+c=b, то один из корней равен -1, а второй по теореме Виета равен –с/а Пример: решите уравнение 203 х х+17=0 х 1 =у 1 /а, х 2 =у 2 /а


III. Общие методы решения уравнений 11. Метод разложения на множители. Цель: Привести квадратное уравнение общего вида к виду А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Способы: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Пример: решите уравнение 3 х 2 +2 х-1=0 12. Метод введения новой переменной. Удачный выбор новой переменной делает структуру уравнения более прозрачной Пример: решите уравнение (х 2 +3 х-25) 2 -6(х 2 +3 х-25)= - 8









1. Какое утверждение называется следствием? Докажи­те, что прямая, пересекающая одну из двух парал­лельных прямых, пересекает и другую.2.Докажите, что ес

ли две прямые параллельны третьей прямой, то они параллельны.3. Какая теорема называется обратной данной теореме?Приведите примеры теорем, обратных данным.4.Докажите, что при пересечении двух параллельных прямых секущей накрест лежащие углы равны.5.Докажите, что если прямая перпендикулярна к од­ной из двух параллельных прямых, то она перпенди­кулярна и к другой.6.Докажите, что при пересечении двух параллельных прямых секущей: а) соответственные углы равны; б) сумма односторонних углов равна 180°.

Помогите Пожалуйста с вопросами по геометрии(9 класс)! 2)Что значит разложить вектор по двум

данным векторам. 9)Что такое радиус-вектора точки?Докажите, что координаты точки равны соответствующим координатам векторов. 10)Выведите формулы для вычисления координат вектора по координатам его начала и конца. 11)Выведите формулы для вычисления координат вектора по координатам его концов. 12) Выведите формулу для вычисления длины вектора по его координатам. 13)Выведите формулу для вычисления расстояния между двумя точками по их координатам. 15)Какое уравнение называется уравнением данной линии?Приведите пример. 16)Выведите уравнение окружности данного радиуса с центром в данной точке.

1)Сформулируйте и докажите лемму о коллинеарных векторах.


3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
10)Выведите формулы для вычисления координат вектора по координатам его начала и конца.
11)Выведите формулы для вычисления координат вектора по координатам его концов.
12) Выведите формулу для вычисления длины вектора по его координатам.
13)Выведите формулу для вычисления расстояния между двумя точками по их координатам.
14)Приведите пример решения геометрической задачи с применением метода координат.
16)Выведите уравнение окружности данного радиуса с центром в данной точке.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.

Пожалуйста очень надо! Желательно с рисунками(где надо)!

ГЕОМЕТРИЯ 9 КЛАСС.

1)Сформулируйте и докажите лемму о коллинеарных векторах.
2)Что значит разложить вектор по двум данным векторам.
3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
9)Что такое радиус-вектора точки? Докажите, что координаты точки равны соответствующим координатам векторов.
14)Приведите пример решения геометрической задачи с применением метода координат.
15)Какое уравнение называется уравнением данной линии? Приведите пример.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.

Вам также будет интересно:

Игра
ОРФОГРАФИЧЕСКИЕ ИГРЫ. 1.Проверьте Незнайку. Незнайка играл в слова, составляя из двух слов...
Крайняя северная материковая точка России
Крайней точкой считается наиболее отдаленное место на севере, юге, западе и востоке, где...
Понятие о химическом процессе
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже...
А вы знаете, почему Герасим утопил Муму?
Почему Герасим утопил Муму? Наверняка этот вопрос интересует многих людей, особенно тем,...
Как человек разрушает окружающую среду
В соответствии со ст. 86 Закона РФ вред окружающей среде может быть причинен юридическими...