Статистическое определение вероятности случайного события. Классическое и статистическое определения вероятности события

Как было сказано выше, классическое определение вероятности предполагает, что все элементарные исходы равновозможны. О равновозможности исходов опыта заключают в силу соображений симметрии. Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи в этим появилась необходимость введения еще одного определения вероятности, называемого статистическим. Предварительно введем понятие относительной частоты.

Относительной частотой события , или частотой, называется отношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события А через W(A), тогда

где n – общее число опытов; m – число опытов, в которых появилось событие А .

При небольшом числе опытов частота события носит в значительной мере случайный характер и может заметно меняться от одной группы опытов к другой. Например, при каких-то десяти бросаниях монеты вполне возможно, что герб появится 2 раза (частота 0,2), при других десяти бросаниях мы вполне можем получить 8 гербов (частота 0,8). Однако при увеличении числа опытов частота события все более теряет свой случайный характер; случайные обстоятельства, свойственные каждому отдельному опыту, в массе взаимно погашаются, и частота проявляет тенденцию стабилизироваться, приближаясь с незначительными колебаниями к некоторой средней постоянной величине. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного события.

Статистическое определение вероятности: вероятностью события называют число, около которого группируются значения частоты данного события в различных сериях большого числа испытаний.

Свойство устойчивости частот, многократно проверенное экспериментально и подтверждающееся опытом человечества, есть одна из наиболее характерных закономерностей, наблюдаемых в случайных явлениях. Между частотой события и его вероятностью существует глубокая связь, которую можно выразить так: когда мы оцениваем степень возможности какого-либо события, мы связываем эту оценку с большей или меньшей частотой появления аналогичных событий на практике.

Геометрическая вероятность

Классическое определение вероятности предполагает, что число элементарных исходов конечно. На практике встречаются опыты, для которых множество таких исходов бесконечно. Для того чтобы преодолеть этот недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область.

Допустим, что на плоскости задана квадрируемая область G , т.е. область, имеющая площадь S G . В области G содержится область g площади S g . В область G наудачу брошена точка. Будем считать, что брошенная точка может попасть в некоторую часть области G с вероятностью, пропорциональной площади этой части и независящей от ее формы и расположения. Пусть событие А – «попадание брошенной точки в область g », тогда геометрическая вероятность этого события определяется формулой:

В общем случае понятие геометрической вероятности вводится следующим образом. Обозначим меру области g (длину, площадь, объем) через mes g , а меру области G – черезmes G ; пусть также А – событие «попадание брошенной точки в область g , которая содержится в области G ». Вероятность попадания в область g точки, брошенной в область G , определяется формулой

.

Задача . В круг вписан квадрат. В круг наудачу бросается точка. Какова вероятность того, что точка попадёт в квадрат?

Решение. Пусть радиус круга равен R , тогда площадь круга равна . Диагональ квадрата равна , тогда сторона квадрата равна , а площадь квадрата равна . Вероятность искомого события определяется как отношение площади квадрата к площади круга, т.е. .

Контрольные вопросы

1. Что называется испытанием (опытом)?

2. Что называется событием?

3. Какое событие называется а) достоверным? б) случайным? в) невозможным?

4. Какие события называются а) несовместными? б) совместными?

5. Какие события называются противоположными?ываются а) несовместными б) совместнымиывается случайным?

6. Что называется полной группой случайных событий?

7. Если события не могут произойти все вместе в результате испытания, то будут ли они попарно несовместными?

8. Образуют ли события А и полную группу?

9. Какие элементарные исходы благоприятствуют данному событию?

10. Какое определение вероятности называется классическим?

11. В каких пределах заключена вероятность любого события?

12. При каких условиях применяется классическая вероятность?

13. При каких условиях применяется геометрическая вероятность?

14. Какое определение вероятности называется геометрическим?

15. Что называется частотой события?

16. Какое определение вероятности называется статистическим?

Контрольные задания

1. Из букв слова «консерватория» наугад извлекается одна буква. Найти вероятность того, что эта буква гласная. Найти вероятность, что это буква «о».

2. На одинаковых карточках написаны буквы «о», «р», «с», «т». Найти вероятность того, что на разложенных наудачу в ряд карточках появится слово «трос».

3. В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрывается 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?

4. Подбрасывается два игральных кубика. Найти вероятность того, что сумма очков на обоих кубиках больше 6.

5. На пяти одинаковых карточках написаны буквы л, м, о, о, т. Какова вероятность того, что извлекая карточки по одной наугад, получим в порядке их выхода слово «молот»?

6. Из 10 билетов выигрышными являются 2. Чему равна вероятность того, что среди взятых наудачу пяти билетов один выигрышный?

7. Какова вероятность того, что в наудачу выбранном двузначном числе цифры таковы, что их произведение равно нулю.

8. Наудачу выбрано число, не превосходящее 30. Найти вероятность того, что это число является делителем 30.

9. Наудачу выбрано число, не превосходящее 30. Найти вероятность того, что это число кратно 3.

10. Наудачу выбрано число, не превосходящее 50. Найти вероятность того, что это число простое.

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Вероятность проявляет себя, когда один и то же случайный эксперимент проводится много раз, причем так, что результаты уже проведенных экспериментов никак не влияют на последующие. При этих условиях частота наступления события при неограниченном возрастании числа экспериментов стремится к вероятности события.

Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость чаще будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n -достаточно большое число, скажем n =1000 или n =5000), подсчитать число выпадений трех очков n 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равной n 3 /n - относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов - единицы, двойки, чет­верки и т.д.

Классическое определение вероятности предполагает, что все элементарные исходы равновозможны. О равновозможности исходов опыта заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим. Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

Определение 18.2.2. Относительной частотой события, или частотой , называется отношение

числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события А через W(A), тогда по определению W(A)= m/n ,

где m - число опытов, в которых появилось событие А; n - число всех произведенных опытов.

Частота события обладает следующими свойствами.

1. Частота случайного события есть число, заключенное между нулем

и единицей:

0< W(A) < 1

2. Частота достоверного события Ω равна единице:

W(Ω) = 1

3. Частота невозможного события Ø равна:

W(Ø)=0.

4. Частота суммы двух несовместных событий А и В равна сумме



частот этих событий:

W(A + В) = W(A) + W(B)

Наблюдения позволили установить, что относительная частота обладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного события.

Определение 18.2.3.(Статистической) вероятностью события называется число, около которого группируются значения частоты данного события в различных сериях большого числа испытаний.

Более строго, статистическая вероятность P( w i) определяется как предел относительной частоты появления исхода w i в процессе неограниченного увеличения числа случайных экспериментов n , то есть

где m n (w i ) – число случайных экспериментов (из общего числа n произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исхода w i .

В случае статистического определения вероятность обладает теми же свойствами, что и вероятность, определенная по классической схеме:

свойствами: 1) вероятность достоверного события равна единице;

2) вероятность невозможного события равна нулю; 3) вероятность

случайного события заключена между нулем и единицей; 4) вероятность

суммы двух несовместных событий равна сумме вероятностей этих событий.

Пример . Из 500 взятых наудачу деталей оказалось 10 бракованных. Какова частота бракованных деталей?

W = 10/500 = 1/50 = 0,2

Геометрическая вероятность

Классическое определение вероятности предполагает, что число элементарных исходов конечно. На практике встречаются опыты, для которых множество таких исходов бесконечно.

Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область.



Пусть эксперимент состоит в случайном выборе точки из некоторой области. Полагаем выбор любой точки равновозможным. Заданную в пространстве область обозначим W. В эксперименте, связанном со случайным выбором только одной точки из W, множество W является пространством элементарных событий. Случайными событиями в этом случае можно считать разные подмножества из W. Будем говорить, что случайное событие А наступило, если наугад выбранная точка x принадлежит подмножеству А, т.е.

Определение 18.2.4.

Пусть W – некоторый отрезок, L – его длина. А – отрезок длины l, принадлежащий W . Событие А состоит в попадании точки, брошенной в большой отрезок в А. Тогда

Аналогично, если множествомW элементарных исходов случайного эксперимента является фигура на плоскости площади S, а область А, ее подмножество, куда может попасть случайно брошенная на W точка, имеет площадь s, соответствующая вероятность события А – попадания в область А тогда

И, наконец, если речь идет об объемных фигурах, соответственно, W объема V и входящей в нее области А объема v

Замечание 18.2.3. . Строго говоря, рассматриваемый здесь подход требует введения более общей характеристики (функции) множества – его меры (mes (A) ), частными случаями которой являются длина, площадь и объем, и тогда вероятность события А будет отношением меры множества А к мере множества W

Пример 1. В квадрат вписан круг. Точка случайным образом бросается в квадрат. Какова вероятность того, что она попадет в круг? Согласно приведенной формуле соответствующая вероятность будет отношением площади круга к площади квадрата.

Пример 2. Два человека обедают в кафе в обеденный перерыв, который начинается у них в одно время и продолжается 1 час, от 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x - время прихода в кафе первого, а y - время прихода второго . Встретиться они могут только тогда, когда оба находятся в кафе.

Если второй пришел не позже первого (x ³ y ), то встреча произойдет при условии 0 £ x - y £ 1/6..

Таким образом, в первом случае нас будет удовлетворять условие y £ x + 1/6 , а во втором

y ≥ x - 1/6 . Область, удовлетворяющая этим двум условиям заштрихована на рис. 2

Иными словами, в терминах геометрической вероятности, вероятность встречи есть отношение площади заштрихованной «полосы» между прямыми y = x + 1/6 и y = x - 1/6 внутри квадрата к площади самого квадрата.

Искомая вероятность p равна отношению площади заштрихованной области к площади всего квадрата.. Площадь квадрата равна единице, а площадь заштрихованной области можно определить как разность единицы и суммарной площади двух треугольников, изображенных на рисунке 7. Отсюда следует:

Классическое определœение вероятности.

Различные определœения вероятности.

Алгебра событий.

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, ĸᴏᴛᴏᴩᴏᴇ тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определœением вероятности следует считать классическое, ĸᴏᴛᴏᴩᴏᴇ возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определœения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

По этой причине об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, ĸᴏᴛᴏᴩᴏᴇ может произойти при осуществлении эксперимента͵ случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С – случаи А 3 , А 6 .

Классической вероятностью появления некоторого события принято называть отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) – вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) =, Р(С)= .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m =9, n =9+6=15, P(A) =

B - вынутые наугад два шара красные:

Из классического определœения вероятности вытекают следующие свойства (показать самостоятельно):

1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определœение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Вместе с тем, слабая сторона классического определœения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. При этом такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определœением вероятности пользуются и другими определœениями вероятности.

Статистической вероятностью события А принято называть относительная частота появления этого события в произведённых испытаниях:

где – вероятность появления события А;

– относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример: Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

Статистический способ определœения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

· Рассматриваемые события должны быть исходами только тех испытаний, которые бывают воспроизведены неограниченное число раз при одном и том же комплексе условий.

· События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

· Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определœения, сохраняются и при статистическом определœении вероятности.

Понятие и виды. Классификация и особенности категории "Статистическое определение вероятности." 2017, 2018.

  • - Статистическое определение вероятности.

    Пусть произведено N испытаний, при этом событие A наступило ровно M раз. Отношение называется относительной частотой события A и обозначается. За вероятность события A принимается число, около которого группируются наблюдаемые значения относительной частоты: . ... .


  • - Статистическое определение вероятности.

    Относительная частота. Пусть A есть случайное событие, которое может наступить в данном опыте. Напомним, что мы рассматриваем опыты, удовлетворяющие условиям а),б) пункта 2. Предположим, что после повторения опыта N раз, событие A произошло M раз. Определение... .




  • - Статистическое определение вероятности

    Существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения. В первую очередь это события с неравновозможными исходами (например, игральная кость «нечестная», монета сплющена и т.д.). В таких случаях может помочь... [читать подробнее] .


  • - Относительная частота. Статистическое определение вероятности.

    Классическое определение вероятности. Предмет теории вероятностей. Случайные события. Алгебра событий. Относитель-ная частота и вероятность случайного события. Полная группа событий. Классичес-кое определение вероятности. Основные свойства вероятности.... .


  • Классическое определение вероятности предполагает, что все эле­ментарные исходы равновозможны . О равновозможности исходов опы­та заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим . Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

    Относительной частотой события , или частотой , называется от­ношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события через , тогда по определению

    (1.4.1)
    где - число опытов, в которых появилось событие и - число всех произведенных опытов.

    Частота события обладает следующими свойствами.

    Наблюдения позволили установить, что относительная частота об­ладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного со­бытия.

    Вероятностью события называется число, около которого группи­руются значения,частоты данного события в различных сериях большо­го числа испытаний.

    Это определение вероятности называется статистическим .

    В случае статистического определения вероятность обладает сле­дующими свойствами:
    1) вероятность достоверного события равна еди­нице;
    2) вероятность невозможного события равна нулю;
    3) вероятность случайного события заключена между нулем и единицей;
    4) вероятность суммы двух несовместных событий равна сумме вероятностей этих со­бытий.

    Пример 1. Из 500 взятых наудачу деталей оказалось 8 бракован­ных. Найти частоту бракованных деталей.

    Решение. Так как в данном случае = 8, = 500, то в соответствии с формулой (1.4.1) находим

    Пример 2 . Игральный кубик подброшен 60 раз, при этом шестерка появилась 10 раз. Какова частота появления шестерки ?

    Решение. Из условия задачи следует, что = 60, = 10, поэтому

    Пример 3. Среди 1000 новорожденных оказалось 515 мальчиков.Чему равна частота рождения мальчиков?
    Решение. Поскольку в данном случае , , то .

    Пример 4. В результате 20 выстрелов по мишени получено 15 попаданий. Какова частота попаданий?

    Решение. Так как = 20, = 15, то

    Пример 5. При стрельбе по мишени частота попаданий = 0,75. Найти число попаданий при 40 выстрелах.

    Решение. Из формулы (1.4.1) следует, что . Так как = 0,75, = 40, то . Таким образом, было получено 30 попаданий.

    Пример 6. www.. Из высе­янных семян взошло 970. Сколько семян было высеяно?

    Решение. Из формулы (1.4.1) следует, что . Поскольку , , то . Итак, было высеяно 1000 семян.

    Пример 7. На отрезке натурального ряда от 1 до 20 найти частоту простых чисел.

    Решение. На указанном отрезке натурального ряда чисел находятся следующие простые числа: 2, 3, 5, 7, 11, 13, 17, 19; всего их 8. Так как = 20, = 8, то искомая частота

    .

    Пример 8. Проведены три серии многократных подбрасываний симметричной монеты, подсчитаны числа появлений герба: 1) = 4040, =2048, 2) = 12000, = 6019; 3) = 24000, = 12012. Найти частоту появления герба в каждой серии испытаний.

    Решение . В соответствии с формулой (1.4.1) находим:

    Замечание. Эти примеры свидетельствуют о том, что при многократ­ных испытаниях частота события незначительно отличается от его вероятности. Вероятность появления герба при подбрасывании монеты р = 1/2 = 0,5 , так как в этом случае n = 2, m = 1.

    Пример 9. Среди 300 деталей, изготовленных на автоматическом станке, оказалось 15, не отвечающих стандарту. Найти частоту появле­ния нестандартных деталей.

    Решение. В данном случае n = 300, m = 15, поэтому

    Пример 10. Контролер, проверяя качество 400 изделий установил, что 20 из них относятся ко второму сорту, а остальные - к первому. Най­ти частоту изделий первого сорта, частоту изделий второго сорта.

    Решение. Прежде всего, найдем число изделий первого сорта: 400 - 20 = 380. Поскольку n = 400, = 380, то частота изделий перво­го сорта

    Аналогично находим частоту изделий второго сорта:

    Задачи

    1. Отдел технического контроля обнаружил 10 нестандартных изде­лий в партии из 1000 изделий. Найдите частоту изготовления бракован­ных изделий.
    2. Для выяснения качества семян было отобрано и высеяно в лабо­раторных условиях 100 штук. 95 семян дали нормальный всход. Какова частота нормального всхода семян?
    3. Найдите частоту появления простых чисел в следующих отрезках натурального ряда: а) от 21 до 40; б) от 41 до 50; в) от 51 до 70.
    4. Найдите частоту появления цифры при 100 подбрасываниях сим­метричной монеты. (Опыт проводите самостоятельно).
    5. Найдите частоту появления шестерки при 90 подбрасываниях иг­рального кубика.
    6. Путем опроса всех студентов Вашего курса определите частоту дней рождения, попадающих на каждый месяц года.
    7. Найдите частоту пятибуквенных слов в любом газетном тексте.

    Ответы

    1. 0,01. 2. 0,95; 0,05. 3. а) 0,2; б) 0,3; в) 0,2.

    Вопросы

    1. Что такое частота события?
    2. Чему равна частота достоверного события?
    3. Чему равна частота невозможного события?
    4. В каких пределах заключена частота случайного события?
    5. Чему равна частота суммы двух несовместных событий?
    6. Какое определение вероятности называют статистическим?
    7. Какими свойствами обладает статистическая вероятность?

    Вам также будет интересно:

    Цп автоматизированные системы управления и промышленная безопасность Наука как социальный институт государства
    Наука как соц. институт – сфера чел. деятельности, целью которой явл. изучение предметов и...
    Какое значение имеет Антарктида?
    Потребность мировой экономики в минеральных ресурсах будет только расти. На этом фоне,...
    Особенности строения генов у про- и эукариот
    Ген - структурная и функциональная единица наследственности, контролирующая развитие...
    Взаимодействие тел — Гипермаркет знаний
    Взаимодействие тел «Ключом ко всякой науке является вопросительный знак» Оноре де...
    Что означают Советские имена: толкование и история происхождения Имена после революции 1917
    Имена советского происхождения - личные имена, бытующие в языках народов бывшего СССР,...