Практическое руководство по магии

Этнический состав южной америки

Равноускоренное движение: формулы, примеры

Значение слова мальчиш-кибальчиш в литературной энциклопедии Кто написал сказку о мальчише кибальчише

Веселые герои мультфильма чаггингтон

Счетный материал «Математические кораблики Дидактические игры с математическим деревянным корабликам

Эрнан Кортес: Завоевание Мексики Фернандо кортес что открыл

Территория нао. Ненецкий АО. Подземные водные ресурсы

Я злая, высокомерная, нервная, все из детства Что делать я очень злая

Судьба наследия Галицко Волынского княжества

Ольга Федоровна Берггольц

Замдиректора института философии ран сергей никольский рассказал о типичных признаках империи и о том, чем подданный отличается от гражданина Домик пастора Даниэля

Объяснительная записка об ошибке в работе Зачем нужна объяснительная записка

Живая азбука, живые буквы в картинках, русский алфавит в картинках На что похожи буквы рисунок получили приз

Строение и функции молекул ДНК и РНК

В сравнении простой диффузией облегченная диффузия. Править]Облегчённая диффузия

Диффузию через клеточную мембрану разделяют на два подтипа: простую диффузию и облегченную диффузию. Простая диффузия означает, что кинетическое движение молекул или ионов происходит через отверстие в мембране или межмолекулярные пространства без какого-либо взаимодействия с мембранными белками-переносчиками. Скорость диффузии определяется количеством вещества, скоростью кинетического движения, числом и размером отверстий в мембране, через которые могут перемещаться молекулы или ионы.

Облегченная диффузия требует взаимодействия с белком-переносчиком, который способствует транспорту молекул или ионов, связываясь с ними химически и в такой форме курсируя через мембрану.

Простая диффузия может происходить сквозь клеточную мембрану двумя способами: (1) через межмолекулярные промежутки липидного бислоя, если диффундирующее вещество растворимо в жирах; (2) через заполненные водой каналы, пронизывающие некоторые крупные транспортные белки, как показано на рис. 4-2 слева.

Диффузия жирорастворимых веществ через липидный бислой. Одним из наиболее важных факторов, определяющих скорость диффузии вещества через липидный бислой, является его растворимость в липидах. Например, кислород, азот, углекислый газ и спирты имеют более высокую растворимость в липидах, поэтому могут непосредственно растворяться в липидном бислое и диффундировать через клеточную мембрану точно так же, как диффундируют водорастворимые вещества в водных растворах. Очевидно, что величина диффузии каждого из этих веществ прямо пропорциональна их растворимости в липидах. Этим путем может транспортироваться очень большое количество кислорода. Таким образом, кислород может доставляться внутрь клеток практически так же быстро, как если бы клеточной мембраны не существовало.

Диффузия воды и других нерастворимых в жирах молекул через белковые каналы. Несмотря на то, что вода совсем не растворяется в липидах мембраны, она легко проходит через каналы в белковых молекулах, пронизывающих мембрану насквозь. Поражает быстрота, с которой молекулы воды могут двигаться сквозь большинство клеточных мембран. Например, общее количество воды, которое диффундирует в любом направлении через мембрану эритроцита в секунду, примерно в 100 раз больше, чем объем самой клетки.

Сквозь каналы, представленные белковыми порами , могут проходить и другие нерастворимые в липидах молекулы, если они растворимы в воде и достаточно малы. Однако увеличение размеров таких молекул быстро снижает их проникающую способность. Например, возможность проникновения мочевины через мембрану примерно в 1000 раз меньше, чем воды, хотя диаметр молекулы мочевины всего на 20% больше диаметра молекулы воды. Тем не менее, учитывая поразительную скорость прохождения воды, проникающая способность мочевины обеспечивает ее быстрый транспорт через мембрану в течение нескольких минут.

Диффузия через белковые каналы

Компьютерные трехмерные реконструкции белковых каналов продемонстрировали наличие трубчатых структур, пронизывающих мембрану насквозь - от внеклеточной до внутриклеточной жидкости. Следовательно, вещества могут двигаться по этим каналам путем простой диффузии с одной стороны мембраны на другую. Белковые каналы отличаются двумя важными особенностями: (1) они часто избирательно проницаемы для определенных веществ; (2) многие каналы могут открываться или закрываться с помощью ворот.

Избирательная проницаемость белковых каналов . Многие белковые каналы высокоизбирательны для транспорта одного или нескольких специфических ионов или молекул. Это связано с собственными характеристиками канала (диаметром и формой), а также с природой электрических зарядов и химических связей выстилающих его поверхностей. Например, один из важнейших белковых каналов - так называемый натриевый канал - имеет диаметр от 0,3 до 0,5 нм, но, что более важно, внутренние поверхности этого канала заряжены сильно отрицательно. Эти отрицательные заряды могут затягивать мелкие дегидратированные ионы натрия внутрь каналов, фактически вытягивая эти ионы из окружающих их молекул воды. Оказавшись в канале, ионы натрия диффундируют в любом направлении согласно обычным правилам диффузии. В связи с этим натриевый канал специфически избирателен для проведения ионов натрия.

Эти каналы несколько меньше, чем натриевые каналы , их диаметр составляет лишь около 0,3 нм, однако они не заряжены отрицательно и имеют иные химические связи. Следовательно, нет выраженной силы, тянущей ионы внутрь канала, и ионы калия не освобождаются от их водной оболочки. По размеру гидратированная форма иона калия значительно меньше гидратированной формы иона натрия, поскольку ион натрия притягивает гораздо больше молекул воды, чем ион калия. Следовательно, более мелкие гидратированные ионы калия легко могут проходить через этот узкий канал, в то время как более крупный гидратированный ион натрия «выбраковывается», что и обеспечивает избирательную проницаемость для специфического иона.

  • Обеззараживание ультрафиолетовым (уф) излучен стерилизация воздуха и твёрдых поверхностей, дезинфекция питьевой воды
  • 50.Элементы квантовой механики. Волновые свойства движущихся микрочастиц. Длина волны де Бройля. Дифракция электронов.
  • 51.Оптические спектры атомов. Спектр атома водорода. Молекулярные спектры.
  • 52.Понятие об индуцированном излучении света. Оптические квантовые генераторы (лазеры) и их применение в медицине
  • 53.Люминесценция. Виды люминесценции. Флюоресценция, фосфоресценция. Правило Стокса. Квантовый выход люминесценции. Закон Вавилова.
  • 54.Люминесценция биологических систем. Безизлучательный переход. Люминесцентный анализ. Люминесцентные метки и зонды и их применение.
  • 55.Рентгеновские лучи и их свойства. Простейшая рентгеновская трубка. Тормозное рентгеновское излучение и его спектр.
  • Характеристическое рентгеновское излучение
  • 56. Рентгеновские лучи и их свойства. Простейшая рентгеновская трубка. Характеристическое рентгеновское излучение и его спектр.
  • 57.Взаимодействие рентгеновского излучения с веществом. Применение рентгеновского излучения в медицине. Понятие о рентгеноструктурном анализе.
  • 6. Использование рентгеновского излучения в медицине
  • 58.Радиоактивность. Закон радиоактивного распада. Активность радиоактивных препаратов.
  • 59.Виды радиоактивного распада.
  • 60-61А. Взаимодействие радиоактивного излучения с веществом. Его ионизирующая и проникающая способность. Ослабление радиоактивного излучения при прохождении через вещество.
  • В медицине
  • Для получения картины внутренних органов и скелета используют рентгенография, рентгеноскопия, компьютерная томография.
  • 62.Дозиметрия. Поглощенная, экспозиционная, эквивалентная и эффективная эквивалентная дозы. Мощность дозы.
  • 63.Детекторы ионизирующего излучения. Дозиметры.
  • 64.Структура и основные функции биомембран. Модельные липидные мембраны.
  • 65.Физическое состояние липидов в мембране и методы исследования мембран (ямр, эпр, метод флюоресцентых и спиновых зондов, электронная микроскопия, ик – спектроскопия, рентгеноструктурный анализ).
  • 66.Транспорт веществ через биологические мембраны. Явление переноса. Общее уравнение переноса.
  • 67. Пассивный транспорт. Диффузия. Простая и облегченная диффузия, осмос, фильтрация.
  • 68.Физические методы изучения переноса веществ через мембраны
  • 69.Активный транспорт. Молекулярная организация мембранной системы активного транспорта на примере натрий-калиевого насоса.
  • 70.Биопотенциалы покоя. Механизм их возникновения.
  • 71. Биопотенциал действия. Механизм его возникновения.
  • 67. Пассивный транспорт. Диффузия. Простая и облегченная диффузия, осмос, фильтрация.

    Выделяют следующие виды пассивного переноса через биологические мембраны: простая диффузия, диффузия через поры, облегченная диффузия, осмос и фильтрация :

    а) Простая диффузия – это самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вследствие хаотического теплового движения частиц.

    –уравнение Коллендера.

    Величина Р = Dk / l называется коэффициентом проницаемости . В живой клетке такая диффузия обеспечивает прохождение кислорода и углекислого газа, а также ряда лекарственных веществ и ядов.

    в) Облегченная диффузия происходит при участии молекул-переносчиков (перенос через мембрану ионов калия)

    Соединения, обладающие способностью избирательно увеличивать скорость переноса ионов через мембрану получили название ионофоров .

    При облегчённой диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком выступает одно и тоже соединение. Например, глюкоза переносится лучше, чем фруктоза; фруктоза лучше, чем ксилоза; ксилоза, лучше, чем арабиноза и т.д.

    Известны также соединения, способные избирательно блокировать облегчённую диффузию ионов через мембрану. Они образуют прочные комплексы с молекулами переносчиками. Например яд рыбы фугу тетродотоксин блокирует транспорт натрия, флоридзин подавляет транспорт сахаров и т.д.

    в) Осмос – диффузия растворителя через полупроницаемую мембрану, разделяющую два раствора с разной концентрацией . Сила, которая вызывает это движение растворителя, называется осмотическим давлением. Оно возникает вследствие теплового движения молекул воды и растворённого вещества. Избыточное давление вызывает фильтрацию воды в обратном направлении. В некоторый момент наступает состояние динамического равновесия. Давление соответствующее этому состоянию называется осмотическим давлением. Величина осмотического давления определяется уравнением Ван-Гоффа:

    р = i·c·R·T, (16)

    где с – концентрация растворённого вещества; Т – термодинамическая температура; R – газовая постоянная; i – изотонический коэффициент, показывает во сколько раз возросло число частиц в растворе из-за диссоциации молекул. Скорость осмотического переноса воды через мембрану определяется соотношением:

    где Р о – коэффициент проницаемости, S – площадь мембраны, (р 1 – р 2) – разность осмотических давлений по одну и другую стороны мембраны.

    г) Фильтрацией называется движение жидкости через поры в мембране под действием градиента гидростатического давления . Объёмная скорость переноса жидкости при этом подчиняется закону Пуазейля:

    где r – радиус поры; l – длина канальца поры; (р 1 -р 2) – разность давлений на концах канальца; η – коэффициент вязкости переносимой жидкости; – модуль градиента давления вдоль поры;– гидравлическое сопротивление. Это явление наблюдается при переносе воды через стенки кровеносных сосудов (капилляров). Явление филь-трации играет важную роль во многих физиологических процессах. Так, например, образование первичной мочи в почечных нефронах происходит в результате фильтрации плазмы крови под действием давления крови. При некоторых патологиях фильтрация усиливается, что приводит к отёкам.

    Простая диффузия

    По пути простой диффузии частицы вещества перемещаются сквозь липидный бислой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O 2 , N 2 , бензол) и полярные маленькие молекулы (CO 2 , H 2 O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

    править]Облегчённая диффузия

    Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегчённой диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегчённой диффузии по сравнению с простой пассивной диффузией. Скорость облегчённой диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегчённая диффузия не требует специальных энергетических затрат за счёт гидролиза АТФ. Эта особенность отличает облегчённую диффузию от активного трансмембранного транспорта

    Осмос играет важную роль во многих биологических процессах. Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворённых в крови питательных веществ и продуктов клеточной жизнедеятельности; для больших белковых молекул, находящихся в растворённом состоянии внутри клетки, она непроницаема. Поэтому белки, столь важные для биологических процессов, остаются внутри клетки.

    Осмос участвует в переносе питательных веществ в стволах высоких деревьев, где капиллярный перенос не способен выполнить эту функцию.

    Осмос широко используют в лабораторной технике: при определении молярных характеристик полимеров, концентрировании растворов, исследовании разнообразных биологических структур. Осмотические явления иногда используются в промышленности, например при получении некоторых полимерных материалов, очистке высоко-минерализованной воды методом обратного осмоса жидкостей.

    Клетки растений используют осмос также для увеличения объёма вакуоли, чтобы она распирала стенки клетки (тургорное давление). Клетки растений делают это путём запасания сахарозы. Увеличивая или уменьшая концентрацию сахарозы в цитоплазме, клетки могут регулировать осмос. За счёт этого повышается упругость растения в целом. С изменениями тургорного давления связаны многие движения растений (например, движения усов гороха и других лазающих растений). Пресноводные простейшие также имеют вакуоль, но задача вакуолей простейших заключается лишь в откачивании лишней воды из цитоплазмы для поддержания постоянной концентрации растворённых в ней веществ.

    19)Активный транспорт - перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ.

    Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

    В клетках животных наиболее важным механизмом активного транспорта является так называемый натриево-калиевый насос, связанный с разницей в градиенте концентрации ионов К+ и Na+ вне и внутри клетки.

    Среди примеров активного транспорта против градиента концентрации лучше всего изучен натрий-калиевый насос. Во время его работы происходит перенос трех положительных ионов Na+ из клетки на каждые два положительных иона К в клетку. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. При этом расщепляется АТФ, давая энергию. В течение многих лет молекулярная основа натрий-калиевого насоса оставалась неясной. В настоящее время установлено, что эта "машина" представляет собой не что иное, как фермент, расщепляющий АТФ,- натрий-калий-зависимую АТФ-азу. Этот фермент обычно расположен в мембранах и активируется при повышении концентрации ионов натрия внутри клетки или ионов калия в наружной среде. Большинство исследователей склоняется к мысли, что насос действует по принципу открывающихся и закрывающихся каналов. Предполагается, что натриевые и калиевые каналы соседствуют друг с другом. Связывание молекул "канального" белка с ионом натрия приводит к нарушению системы водородных связей, в результате чего меняется его форма. Обычная а- спираль, в которой на каждый виток приходится 3,6 аминокислотного остатка, переходит в более рыхную бета-спираль (4,4 аминокислотного остатка). В результате образуется внутренняя полость, достаточная для прохождения иона Na+, но слишком узкая для иона калия. После прохождения Na+ пи-спираль переходит в туго свернутую так называемую спираль З 10 (это означает, что 3 аминокислотных остатка приходится на виток и водородная связь у каждого десятого атома). При этом натриевый канал закрывается, а стенки соседнего калиевого канала раздвигаются, образуя полость, достаточно широкую для прохождения иона калия. Натрий-калиевый насос работает по принципу перистальтического насоса (вспомните передвижение пищевого комка по кишечнику), работа которого основана на переменном сжатии и расширении эластичных труб.

    20)Эндоцито́з (англ. endocytosis ) - процесс захвата (интернализации) внешнего материала клеткой, осуществляемый путём образования мембранных везикул. В результате эндоцитоза клетка получает для своей жизнедеятельности гидрофильный материал, который иначе не проникает через липидный бислой клеточной мембраны. Различают фагоцитоз, пиноцитоз ирецептор-опосредованный эндоцитоз. Термин был предложен в 1963 году бельгийским цитологом Кристианом де Дювом для описания множества процессов интернализации, развившихся в клетке млекопитающих.

    § Фагоцитоз (поедание клеткой) - процесс поглощения клеткой твёрдых объектов, таких как клетки эукариот, бактерии,вирусы, остатки мёртвых клеток и т. п. Вокруг поглощаемого объекта образуется большая внутриклеточная вакуоль (фагосома). Размер фагосом - от 250 нм и больше. Путем слияния фагосомы с первичной лизосомой образуется вторичная лизосома. В кислой среде гидролитические ферменты расщепляют макромолекулы, оказавшиеся во вторичной лизосоме. Продукты расщепления (аминокислоты, моносахариды и прочие полезные вещества) транспортируются затем через лизосомную мембрану в цитоплазму клетки. Фагоцитоз распространен очень широко. У высокоорганизованных животных и человека процесс фагоцитоза играет защитную роль. Фагоцитарная деятельностьлейкоцитов и макрофагов имеет огромное значение в защите организма от попадающих в него патогенных микробов и других нежелательных частиц. Фагоцитоз впервые описал русский ученый И.И. Мечников.

    § Пиноцитоз (питьё клеткой) - процесс поглощения клеткой жидкой фазы из окружающей среды, содержащей растворимые вещества, включая крупные молекулы (белки, полисахариды и др.). При пиноцитозе от мембраны отшнуровываются внутрь клетки небольшие пузырьки - эндосомы. Они меньше фагосом (их размер до 150 нм) и обычно не содержат крупных частиц. После образования эндосомы к ней подходит первичная лизосома, и эти два мембранных пузырька сливаются. Образовавшаяся органелла носит название вторичной лизосомы. Процесс пиноцитоза постоянно осуществляют все эукариотическме клетки.

    § Рецептор-опосредованный эндоцитоз - активный специфический процесс, при котором клеточная мембрана выпучивается внутрь клетки, формируя окаймлённые ямки. Внутриклеточная сторона окаймлённой ямки содержит набор адаптивных белков (адаптин, клатрин, обуславливающий необходимую кривизну выпучивания, и др. белки). Макромолекулы, связывающиеся со специфическими рецепторами на поверхности клетки, проходят внутрь со значительно большей скоростью, чем вещества, поступающие в клетки за счет пиноцитоза. Внешняя сторона мембраны при этом включает специфические рецепторы (например, ЛПНП-рецептор). При связывании лиганда из окружающей клетку среды окаймлённые ямки формируют внутриклеточные везикулы (окаймлённые пузырьки). Рецептор-опосредованный эндоцитоз включается для быстрого и контролируемого поглощения клеткой соответствующего лиганда (например, ЛПНП). Эти пузырьки быстро теряют свою кайму и сливаются между собой, образуя более крупные пузырьки - эндосомы. После чего эндосомы сливаются с первичными лизосомами, в результате чего формируются вторичные лизосомы. Например, когда животной клетке необходимхолестерин для синтеза мембраны, она экспрессирует ЛПНП-рецепторы на плазматической мембране. Богатые холестерином и эфирами холестерина ЛПНП, связавшиеся с ЛПНП-рецепторами, быстро доставляют холестерин в клетку.

    Основные этапы фагоцитарной реакции сходны для клеток обоих типов. Реакция фагоцитоза может быть подразделена на несколько этапов:

    1. Хемотаксис. В реакции фагоцитоза более важная роль принадлежит положительному хемотаксису. В качестве хемоаттрактантов выступают продукты выделяемые микроорганизмами и активированными клетками в очаге воспаления (цитокины, лейкотриен В4, гистамин), а также продукты расщепления компонентов комплемента (С3а, С5а), протеолитические фрагменты факторов свертывания крови и фибринолиза (тромбин, фибрин), нейропептиды, фрагменты иммуноглобулинов и др. Однако, «профессиональными» хемотаксинами служат цитокины группы хемокинов.

    Ранее других клеток в очаг воспаления мигрируют нейтрофилы, существенно позже поступают макрофаги. Скорость хемотаксического перемещения для нейтрофилов и макрофагов сопоставима, различия во времени поступления, вероятно, связаны с разной скоростью их активации.

    2. Адгезия фагоцитов к объекту. Обусловлена наличием на поверхности фагоцитов рецепторов для молекул, представленных на поверхности объекта (собственных или связавшихся с ним). При фагоцитозе бактерий или старых клеток организма хозяина происходит распознавание концевых сахаридных групп - глюкозы, галактозы, фукозы, маннозы и др., которые представлены на поверхности фагоцитируемых клеток. Распознавание осуществляется лектиноподобными рецепторами соответствующей специфичности, в первую очередь маннозосвязывающим белком и селектинами, присутствующими на поверхности фагоцитов.

    В тех случаях, когда объектами фагоцитоза являются не живые клетки, а кусочки угля, асбеста, стекла, металла и др., фагоциты предварительно делают объект поглощения приемлемым для осуществления реакции, окутывая его собственными продуктами, в том числе компонентами межклеточного матрикса, который они продуцируют.

    Хотя фагоциты способны поглощать и разного рода «неподготовленные» объекты, наибольшей интенсивности фагоцитарный процесс достигает при опсонизации, т. е. фиксации на поверхности объектов опсонинов к которым у фагоцитов есть специфические рецепторы - к Fc-фрагменту антител, компонентам системы комплемента, фибронектину и т. д.

    3. Активация мембраны. На этой стадии осуществляется подготовка объекта к погружению. Происходит активация протеинкиназы С, выход ионов кальция из внутриклеточных депо. Большое значение играют переходы золь-гель в системе клеточных коллоидов и актино-миозиновые перестройки.

    4. Погружение. Происходит обволакивание объекта.

    5. Образование фагосомы. Замыкание мембраны, погружение объекта с частью мембраны фагоцита внутрь клетки.

    6. Образование фаголизосомы. Слияние фагосомы с лизосомами, в результате чего образуются оптимальные условия для бактериолиза и расщепления убитой клетки. Механизмы сближения фагосомы и лизосом неясны, вероятно имеется активное перемещение лизосом к фагосомам.


    ДОЗИМЕТРИЧЕСКИЕ ПРИБОРЫ

    Приборы, которые служат для изучения и контроля ионизирующих излучений, называются дозиметрическими.

    Дозиметрические приборы условно можно разделить на пять основных видов: индикаторы, спектроскопы, рентгенометры, радиометры, дозиметры.

    Индикаторы – приборы для обнаружения и ориентировочной оценки радиационного поля.

    Спектроскопы – служат для определения вида излучения и его энергетического спектра.

    Рентгенометры – применяются для измерения экспозиционной дозы и мощности рентгеновского и γ-излучения.

    Радиометры – предназначены для измерения активности нуклида или плотности потока частиц.

    Дозиметры используются для измерения дозы или мощности дозы ионизирующего излучения.

    Основной узел любого дозиметра - это детектор ионизирующего излучения – устройство, обеспечивающее преобразование энергии ионизирующего излучения в другой вид энергии удобной для регистрации : электрический ток, заряд или электрический импульс. С некоторой условностью детекторы можно разделить на три группы: следовые (или трековые), счётчики, интегральные.

    Следовые названы так потому, что позволяют наблюдать трек (траекторию движения) частиц радиоактивного излучения. К ним относятся: камера Вильсона, пузырьковая камера, искровая камера, фотопластинки и фотоэмульсии.

    Счётчики регистрируют каждый случай попадания в объём детектора отдельных квантов ионизирующего излучения:

    а) сцинтилляционные счётчики – в основе работы лежит явление флуоресценциии;

    б) полупроводниковые – реагируют на взаимодействие с частицами радиоактивного излучения изменением электропроводности р-п перехода;

    в) черенковские – счётчики, действие которых основано на явлении Вавилова-Черенкова;

    г) газоразрядные счётчики – детекторы, в которых используется явление возникновения разряда в газах под воздействием отдельного кванта ионизирующего излучения.

    Интегральные детекторы – позволяют зафиксировать суммарную энергию ионизирующего излучения за какое-то время: ионизационная камера, счётчик Гейгера-Мюллера, фотодетектор.

    В зависимости от того, что является движущей силой перемещения, все виды переноса можно разделить на пассивные и активные. Пассивный транспорт веществ осуществляется за счет энергии, сконцентрированной в каком-либо градиенте и не связан с затратой химической энергии гидролиза АТФ. Наиболее значимыми для биологических систем являются градиенты концентрации – dc/dx , электрического потенциала – dφ/dx и гидростатического давления – dр/dx .

    Выделяют следующие виды пассивного переноса через биологические мембраны: простая диффузия, диффузия через поры, облегченная диффузия, осмос и фильтрация:


    а) Простая диффузия – это самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вследствие хаотического теплового движения частиц. Рассмотрим в качестве примера диффузию из клетки незаряженных частиц определённого вида через биологическую мембрану толщиной l . Запишем уравнение Фика через концентрацию вещества данного вида в растворе. Не трудно видеть, что для раствора масса растворённого вещества в единице объёма и есть его массовая концентрация (кг/м 3). Теперь плотность потока вещества через поверхность мембраны в направлении нормали к ней, в соответствии с (10), запишется:

    где D – коэффициент диффузии, Δc/Δx – градиент массовой концентрации

    вдоль направления переноса. Будем считать, что концентрация частиц, диффундирующих через мембрану, изменяется в мембране по линейному закону от значения с i,м до значения с о,м (рис.1). Тогда градиент концентрации можно выразить соотношением:

    Измерить концентрации с о,м и с i ,м в приграничных слоях мембраны практически невозможно. Поэтому воспользуемся соотношением:

    где с о и с i концентрации данного вещества в межклеточной жидкости и цитоплазме, соответственно. С учётом того, что с i ,м = k с i , a с о,м = k с о, получим:

    С учётом (4) уравнение диффузии частиц через мембрану примет вид:

    – уравнение Коллендера. (5)

    Величина Р = Dk / l называетсякоэффициентом проницаемости .

    Проницаемость характеризует способность биологических мембран пропускать или не пропускать молекулы, атомы и ионы. Изучение проницаемости играет важную роль для медицины и, особенно, для фармакологии и токсикологии. Для лечения необходимо знать проникающую способность фармакологических средств и ядов через мембрану в норме и при патологии.

    В живой клетке такая диффузия обеспечивает прохождение кислорода и углекислого газа, а также ряда лекарственных веществ и ядов.

    б) Диффузия через липидные и белковые поры или каналы (рис.6). Такой механизм проникновения сквозь мембрану характерен для молекул нерастворимых в липидах веществ и водорастворимых гидратированных ионов. Этот вид переноса допускает проникновение через мембрану не только малых молекул, например, молекул воды, но и более крупных частиц. Значение проницаемости при этом определяется размерами молекул: с ростом размеров молекул их проницаемость уменьшается. Каналы могут проявлять селективность или избирательность по отношению к разным ионам, это проявляется в разной величине проницаемости для разных ионов.

    Диффузия через поры также описывается уравнением Фика. Наличие пор увеличивает значение коэффициента проницаемости Р.

    в) Облегченная диффузия происходит при участии молекул-переносчиков. Было обнаружено, что скорость проникновения в клетку глюкозы, глицерина, аминокислот не имеет линейной зависимости от разности концентраций. Для определенных концентраций скорость проникновения вещества через мембрану намного больше, чем следует ожидать для простой диффузии. При увеличении разности концентраций скорость диффузии возрастает в меньшей степени, чем это следует из уравнения Коллендера (5). В данном случае наблюдается облегченная диффузия. Её механизм состоит в том, что вещество A, которое самостоятельно плохо проникает через мембрану, способно образовать комплекс с молекулами X вспомогательного вещества (рис.7), которое хорошо растворяется в липидах. Молекулы вещества Х, оказавшись у поверхности мембраны, образуют с молекулами А комплекс AX, который способен растворяться в липидах. Оказавшись в результате диффузии по другую сторону мембраны, некоторые из комплексов отщеплют молекулы A. Молекула X возвращается к наружной поверхности мембраны и может образовать новой комплекс с молекулой А. Разумеется транспорт вещества А таким способом происходит в одну и другую сторону. Поэтому результирующий перенос возникнет только при условии, что концентрация А по одну и другую стороны мембраны разная. Таким способом, например, антибиотик валиномицин переносить через мембраны ионы калия.

    Соединения, обладающие способностью избирательно увеличивать скорость переноса ионов через мембрану получили название ионофоров .

    Если концентрация молекул А в среде такова, что все молекулы вещества-переносчика задействованы, то дальнейшее повышении концентрации вещества А не будет больше вызывать рост скорости диффузии. Это означает, что облегчённая диффузия обладает свойством насыщения.

    При облегчённой диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком выступает одно и тоже соединение. Например, глюкоза переносится лучше, чем фруктоза; фруктоза лучше, чем ксилоза; ксилоза, лучше, чем арабиноза и т.д.

    Известны также соединения, способные избирательно блокировать облегчённую диффузию ионов через мембрану. Они образуют прочные комплексы с молекулами переносчиками. Например яд рыбы фугу тетродотоксин блокирует транспорт натрия, флоридзин подавляет транспорт сахаров и т.д.

    Разновидностью облегчённой диффузии является транспорт с помощью неподвижных переносчиков. Молекулы X образуют фиксированные цепочки поперек мембраны, например, выстилать изнутри пору (рис.8). Молекулы переносимого вещества А передаются от одной молекулы переносчика к другой, как по эстафете. При этом предполагается, что пространство в поре недостаточно велико для прохождения через нее частиц А, если только они не способны к специфическому взаимодействию с переносчиком Х.

    Диффузия является основным видом пассивного транспорта веществ через мембрану клетки. Все остальные виды пассивного переноса связаны в основном с транспортом воды.

    г) Осмос – диффузия растворителя через полупроницаемую мембрану, разделяющую два раствора с разной концентрацией. Сила, которая вызывает это движение растворителя, называется осмотическим давлением. Рассмотрим это явление на примере водных растворов. Осмос возникает вследствие теплового движения молекул воды и растворённого вещества. Некоторые молекулы воды, векторы скорости которых параллельны каналам мембраны, проникают через неё. В то же время для растворённого вещества А мембрана непроницаема. По этой причине поток воды из раствора, где концентрация А ниже будет больше (в этом растворе выше концентрация воды). Процесс приводит к возрастанию гидростатического (водяного) давления в растворе с большей концентрацией А. Это избыточное давление вызывает фильтрацию воды в обратном направлении. В некоторый момент наступает состояние динамического равновесия. Давление соответствующее этому состоянию называется осмотическим давлением. Величина осмотического давления определяется уравнением Ван-Гоффа:

    р = i·c·R·T, (6)

    где с – концентрация растворённого вещества; Т – термодинамическая температура; R – газовая постоянная; i – изотонический коэффициент, показывает во сколько раз из-за диссоциации молекул возросло число частиц в растворе. Скорость осмотического переноса воды через мембрану определяется соотношением:

    где Р о – коэффициент проницаемости, S – площадь мембраны, (р 1 – р 2) – разность осмотических давлений по одну и другую стороны мембраны.

    д) Фильтрацией называется движение жидкости через поры в мембране под действием градиента гидростатического давления . Объёмная скорость переноса жидкости при этом подчиняется закону Пуазейля:

    где r – радиус поры; l – длина канальца поры; (р 1 -р 2) – разность давлений на концах канальца поры; η – коэффициент вязкости переносимой жидкости; – модуль градиента давления вдоль поры; – гидравлическое сопротивление. Это явление наблюдается при переносе воды через стенки кровеносных сосудов (капилляров). Явление фильтрации играет важную роль во многих физиологических процессах. Так, например, образование первичной мочи в почечных нефронах происходит в результате фильтрации плазмы крови под действием давления крови. При некоторых патологиях фильтрация усиливается, что приводит к отёкам.

    При облегченной диффузии вещества переносятся через мембрану также по градиенту концентрации, но с помощью специальных трансмембранных белков-переносчиков (транслоказ). Белок-переносчик имеет центр связывания, комплементарный переносимому веществу, поэтому для облегченной диффузии, в отличие от простой, характерна высокая избирательность: для каждого вещества или группы сходных веществ имеется свой переносчик.

    Переносимое вещество присоединяется к транслоказе, в результате чего изменяется ее конформация, в мембране открывается канал, и вещество освобождается с другой стороны мембраны. Поскольку в канале нет гидрофобного препятствия, то этот механизм называют облегченной диффузией.Перенос ионов через ионные каналы представляет собой вариант облегченной диффузии. Для ионизированных атомов и молекул гидрофобный слой мембраны трудно преодолим. Трансмембранный перенос ряда ионов (Са2+, Na+, К+, О") происходит через ионные каналы. Ионные каналы представляют собой олигомерные белковые структуры, пронизывающие мембрану от наружной до внутренней поверхности и образующие трансмембранный гидрофильный (заполненный водой) канал, проходимый для определенных ионов (рис. 7.13, в). Избирательность каналов к ионам определяется наличием в белках канала специфического центра связывания иона. Проницаемость таких каналов в большинстве случаев регулируется: они могут быть или закрыты, или открыты (см. ниже). Сигналом для изменения состояния канала может быть гормон или иная сигнальная молекула, для которой данный канал имеет центр связывания. Есть каналы, реагирующие на изменение трансмембранного потенциала.
    Перемещение ионов по каналам происходит путем диффузии по градиенту их концентрации. Ионы имеют электрический заряд, поэтому образование разности концентраций ионов по разным сторонам мембраны одновременно означает и образование разности электрического заряда, который тоже влияет на направление переноса ионов. Разность электрического потенциала и разность концентраций вместе называют электрохимическим потенциалом. Следовательно, ионы перемещаются через ионные каналы по градиенту мембранного электрохимического потенциала.
    Направленные потоки веществ путем простой и облегченной диффузии в живой клетке никогда не прекращаются, поскольку выравнивание концентраций никогда не достигается: вещества, поступающие в клетку, например кислород, глюкоза, используются в метаболических процессах, а их убыль постоянно восполняется в результате трансмембранного переноса.
    Перенос веществ путем простой и облегченной диффузии называют пассивным транспортом, поскольку перенос происходит по градиенту концентрации.

    Вам также будет интересно:

    Из истории теоремы пифагора Краткое сообщение о теореме пифагора
    Городская научно-практическая конференция «Старт в науку» Знаменитые теоремы (теорема...
    Самые знаменитые русские в мире
    Русские ученые изобрели телевизор, а русские режиссеры научили весь мир театру. Кто же из...
    Примерное расписание логопедических занятий
    Многие родители, отдавая ребёнка с дефектами речи в школу, ожидают, что там с ним будет...
    Презентация на тему: «Всё о Лондоне»
    London Hello! Today I’m your guide. I want to tell you about London. London is the capital...
    Урок географии
    Урок географии по теме «Географическое положение и история открытия Австралии» Цели...