Равноускоренное движение: формулы, примеры

Значение слова мальчиш-кибальчиш в литературной энциклопедии Кто написал сказку о мальчише кибальчише

Веселые герои мультфильма чаггингтон

Счетный материал «Математические кораблики Дидактические игры с математическим деревянным корабликам

Эрнан Кортес: Завоевание Мексики Фернандо кортес что открыл

Территория нао. Ненецкий АО. Подземные водные ресурсы

Я злая, высокомерная, нервная, все из детства Что делать я очень злая

Судьба наследия Галицко Волынского княжества

Ольга Федоровна Берггольц

Замдиректора института философии ран сергей никольский рассказал о типичных признаках империи и о том, чем подданный отличается от гражданина Домик пастора Даниэля

Объяснительная записка об ошибке в работе Зачем нужна объяснительная записка

Чернышевского: отзывы, факультеты и специальности

Правление царицы клеопатры Легенды о внешности знаменитой правительницы: историческая правда или вымысел

Из истории теоремы пифагора Краткое сообщение о теореме пифагора

Самые знаменитые русские в мире

Малоизвестное обобщение теоремы пифагора. Из истории теоремы пифагора Краткое сообщение о теореме пифагора

Городская научно-практическая конференция

«Старт в науку»

Знаменитые теоремы (теорема Пифагора)

Секция «Созидательная сила

великих открытий в математике»

3.4 Применение в мобильной связи……………………………………………………….26

Заключение……………………………………………………………………………………………27

Список литературы…………………………………………………………………………………...29

Введение.

Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах». Причина такой популярности теоремы Пифагора триедина: это простота – красота – значимость. В самом деле, теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой. Но, кроме того, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т. д.), свидетельствует о гигантском числе ее конкретных реализаций. Открытие теоремы Пифагором окружено ореолом красивых легенд.

Сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике в папирусе времен фараона Аменемхета первого (ок. 2000 до н. э.), и в вавилонских клинописных табличках эпохи царя Хаммурапи (XVIII в. до н. э.), и в древнеиндийском геометрическо-теологическом трактате VII – V вв. до н. э. «Сульва сутра» («Правила веревки»). В древнейшем китайском трактате «Чжоу-би суань цзинь», время создания которого точно не известно, утверждается, что в XII в. до н. э. китайцы знали свойства египетского треугольника, а к VI в. до н. э. – и общий вид теоремы. Несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто невозможно представить, что это словосочетание распадется. Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов.

По выражению известного ученого И. Кеплера, «геометрия владеет двумя сокровищами – теоремой Пифагора и золотым сечением, и если первое из них можно сравнить с мерой золота, то второе – с драгоценным камнем… ».

Теорема Пифагора – одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии.

Один американский математик, наш современник, около 20 лет собирал различные способы доказательства теоремы Пифагора, и сейчас его «коллекция » содержит около 300 различных доказательств. Это говорит о том, что древняя теорема актуальна и интересна людям до сих пор.

В школьном курсе геометрии с помощью теоремы Пифагора решаются только математические задачи. К сожалению, вопрос о практическом применении теоремы Пифагора не рассматривается.

В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой.

Объект исследования: теорема Пифагора.

Предмет исследования: различные интерпретации и способы доказательства теоремы Пифагора, ее применение при решении практических задач.

Изучая дополнительную литературу по выбранной теме, были выдвинуты гипотезы:

1) существуют другие интерпретации теоремы Пифагора;

2) теорема Пифагора применяется при решении многих практических задач.

Цель исследования: внимательно изучив формулировку теоремы Пифагора, проанализировать доказательства и используя обобщение, предложить иные интерпретации теоремы Пифагора, а также выяснить области применения теоремы Пифагора.


Для достижения цели были поставлены следующие задачи:

1. Провести анализ истории возникновения теоремы Пифагора.

2. Исследовать различные способы доказательства и рассмотреть иные интерпретации теоремы Пифагора.

3. Показать практическое применение теоремы Пифагора.

В первой главе исследовательской работы рассматриваем историю возникновения теоремы Пифагора.

Во второй главе мы рассмотрим различные способы доказательства теоремы Пифагора.

В третьей главе мы рассмотрим различные интерпретации теоремы Пифагора.

Мы рассмотрим некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Сделать это полезно еще и потому, что в современных школьных учебниках дается алгебраическое доказательство теоремы. При этом бесследно исчезает первозданная геометрическая аура теоремы, теряется та нить Ариадны, которая вела древних мудрецов к истине, а путь этот почти всегда оказывался кратчайшим и всегда красивым.

Глава 1. История возникновения теоремы Пифагора.

1.1. Биография Пифагора.

Великий ученый Пифагор родился около 570 г. до н. э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери Пифагора не известно. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности. Среди учителей юного Пифагора традиция называет имена старца Гермодаманта и Ферекида Сиросского (хотя и нет твердой уверенности в том, что именно Гермодамант и Ферекид были первыми учителями Пифагора). Целые дни проводил юный Пифагор у ног старца Гермодаманта, внимая мелодии кифары и гекзаметрам Гомера. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. И, будучи признанным мудрецом, окруженным толпой учеников, Пифагор начинал день с пения одной из песен Гомера. Ферекид же был философом и считался основателем италийской школы философии. Таким образом, если Гермодамант ввел юного Пифагора в круг муз, то Ферекид обратил его ум к логосу. Ферекид направил взор Пифагора к природе и в ней одной советовал видеть своего первого и главного учителя. Но как бы то ни было, неугомонному воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым – Фалесом. Фалес советует ему отправится за знаниями в Египет, что Пифагор и сделал.

В 548 г. до н. э. Пифагор прибыл в Навкратис – самосскую колонию, где было, у кого найти кров и пищу. Изучив язык и религию египтян, он уезжает в Мемфис. Несмотря на рекомендательное письмо фараона, хитроумные жрецы не спешили раскрывать Пифагору свои тайны, предлагая ему сложные испытания. Но влекомый жаждой к знаниям, Пифагор преодолел их все, хотя по данным раскопок египетские жрецы не многому могли его научить, т. к. в то время египетская геометрия была чисто прикладной наукой (удовлетворявшей потребность того времени в счете и в измерении земельных участков). Поэтому, научившись всему, что дали ему жрецы, он, убежав от них, двинулся на родину в Элладу. Однако, проделав часть пути, Пифагор решается на сухопутное путешествие, во время которого его захватил в плен Камбиз, царь Вавилона, направлявшийся домой. Не стоит драматизировать жизнь Пифагора в Вавилоне, т. к. великий властитель Кир был терпим ко всем пленникам. Вавилонская математика была, бесспорно, более развитой (примером этому может служить позиционная система исчисления), чем египетская, и Пифагору было чему поучится. Но в 530 г. до н. э. Кир двинулся в поход против племен в Средней Азии. И, пользуясь переполохом в городе, Пифагор сбежал на родину. А на Самосе в то время царствовал тиран Поликрат. Конечно же, Пифагора не устраивала жизнь придворного полу раба, и он удалился в пещеры в окрестностях Самоса. После нескольких месяцев притязаний со стороны Поликрата, Пифагор переселяется в Кротон. В Кротоне Пифагор учредил нечто вроде религиозно-этического братства или тайного монашеского ордена («пифагорейцы»), члены которого обязывались вести так называемый пифагорейский образ жизни. Это был одновременно и религиозный союз, и политический клуб, и научное общество. Надо сказать, что некоторые из проповедуемых Пифагором принципов достойны подражания и сейчас.

Прошло 20 лет. Слава о братстве разнеслась по всему миру. Однажды к Пифагору приходит Килон, человек богатый, но злой, желая спьяну вступить в братство. Получив отказ, Килон начинает борьбу с Пифагором, воспользовавшись поджогом его дома. При пожаре пифагорейцы спасли жизнь своему учителю ценой своей, после чего Пифагор затосковал и вскоре покончил жизнь самоубийством.

1.2. История возникновения теоремы Пифагора.

Обычно открытие теоремы Пифагора приписывают древнегреческому философу и математику Пифагору. Но изучение вавилонских клинописных таблиц и древнекитайских рукописей показало, что это утверждение было известно задолго до Пифагора, возможно, за тысячелетия до него. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

Теорему Пифагора называют еще «теоремой невесты». Дело в том, что в «Началах» Евклида она ещё именуется, как «теорема нимфы», просто её чертёж очень схожий на пчёлку или бабочку, а греки их называли нимфами. Но когда арабы переводили эту теорему, то подумали, что нимфа – это невеста. Вот так и вышла «теорема невесты». Кроме этого, в Индии, её ещё называли «правилом верёвки».

Исторический обзор возникновения теоремы начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: «Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4». В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 32 + 42 = 52 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или «натягиватели веревок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м и привяжем к ней по цветной полоске на расстоянии 3м от одного конца и 4 м от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях.

Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Древней Индии уже около 18 в. до н. э.

В первом русском переводе евклидовых «Начал», сделанном, теорема Пифагора изложена так: «В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих «Начал». С другой стороны, Прокл утверждает, что доказательство в «Началах» принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Рассказывают, что в честь этого открытия Пифагор принес в жертву 100 быков.

Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой – на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:

«Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку».

Глава 2. Различные способы доказательства теоремы Пифагора.

2.1. Формулировки и особенности теоремы Пифагора.

Теорема Пифагора – одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

Первоначально теорема устанавливала соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника: «В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов».

Алгебраическая формулировка: «В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов».

То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b, получаем: a2 + b2 = c2.

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Стоит отметить, что формулировка теоремы данная в школьном учебнике первоначально звучала совсем не так. Приведем переводы формулировок теоремы Пифагора из различных источников:

1. У Евклида эта теорема гласит: «В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол».

2. Латинский перевод арабского текста Аннаирици (около 900 г. н. э.), сделанный Герхардом Кремонским (начало 12 в.), гласит: «Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол».

3. В Geometria Gulmonensis (около 1400 г.) теорема читается так: «Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу».


4. В первом русском переводе евклидовых «Начал», сделанном с греческого («Евклидовых начал восемь книг, содержащие в себе основание геометрии», Санкт-Петербург, 1819), теорема Пифагора изложена так: «В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».

Теорема Пифагора является частным случаем теоремы косинусов, устанавливающей соотношение между сторонами произвольного треугольника, а также известна теорема Пифагора не только на плоскости, но и в пространстве: «Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений».

Также верно обратное утверждение (называемое теоремой обратной теореме Пифагора): «Для всякой тройки положительных чисел a, b и c, такой что a² + b² = c², существует прямоугольный треугольник с катетами a и b и гипотенузой c».

Однако, известно, что она применялась для решения различных задач задолго до Пифагора древними египтянами, вавилонянами, китайцами, индусами и другими древними народами.

Во второй главе мы рассмотрели различные способы доказательства теоремы Пифагора. Пифагором сначала был доказан лишь частный случай теоремы: им рассматривался равнобедренный прямоугольный треугольник. Чертеж, который используют для доказательства этого случая, в шутку называют «пифагоровы штаны» и добавляют: во все стороны равны.

Знакомясь с разными способами доказательства теоремы Пифагора, мы заметили, что одни из них основаны на свойстве равносоставленных фигур, другие – на дополнении до равных фигур, а третьи – на свойстве равновеликих фигур (имеющие равные площади). В этой работе мы рассмотрели лишь несколько способов доказательства знаменитой теоремы, однако их существует гораздо больше.

Изучив историю открытия теоремы Пифагора, выяснилось, что Пифагор открыл не саму теорему, а ее доказательство. Исследовав различные методы доказательства теоремы Пифагора, оказалось, что таких доказательств огромное количество и разделить их можно на следующие:

§ доказательство методом достроения

§ доказательство методом разложения

§ алгебраический метод доказательства

§ векторное доказательство

§ доказательство с помощью подобия и др..

В третьей главе мы рассмотрели несколько элементарных примеров практических задач, в которых при решении применяется теорема Пифагора.

Выяснив практическую значимость теоремы Пифагора, оказалось, что теорема имеет большое применение в повседневной жизни в разных сферах человеческой деятельности: астрономии, строительстве, мобильной связи, архитектуре.

Итак, в результате проведённого исследования мы нашли иные интерпретации теоремы Пифагора и выяснили некоторые области применения теоремы. Нами собрано и обработано много материала из литературных источников и Интернета по данной теме. Мы изучили некоторые исторические сведения о Пифагоре и его теореме, рассмотрели ряд исторических задач на применение теоремы Пифагора. В результате решения поставленных задач мы пришли к выводу, что выдвинутые нами гипотезы нашли подтверждение. Да, действительно, с помощью теоремы Пифагора можно решать не только математические задачи. Теорема Пифагора нашла своё применение в строительстве и архитектуре, мобильной связи.

Результатом нашей работы является:

§ приобретение навыка работы с литературными источниками;

§ приобретение навыка поиска нужного материала в Интернете;

§ мы научились работать с большим объёмом информации, отбирать нужную информацию.

Список литературы.

1. Алексеев. Подготовка к ЕГЭ: учебно-методическое пособие , М., 2011.

2. Болтянский и равносоставленные фигуры. М., 1956.

3. Ван-дер-Варден наука. Математика Древнего Египта, Вавилона и Греции. М., 1959.

4. Еще раз о теореме Пифагора //Учебно-методическая газета «Математика, № 4, 2005.

5. , Яценко справочник школьника. М., 2008.

6. Теорема Пифагора. М., 1960.

7. Несколько способов доказательства теоремы Пифагора // Учебно-методическая газета Математика, № 24, 2010.

8. Изучаем геометрию, М., 2007.

9. Ткачева математика. М., 1994.

10. О теореме Пифагора и способах ее доказательства Г. Глейзер, академик РАО, Москва

11. Теорема Пифагора и пифагоровы тройки глава из книги Д. В. Аносова «Взгляд на математику и нечто из нее»

12. Сайт о теореме Пифагора с большим числом доказательств, материал взят из книги В. Литцмана.

13. http://encyklopedia. *****/bios/nauka/pifagor/pifagor. html

14. http://moypifagor. *****/use. htm

15. http://moypifagor. *****/literature. htm

Великие открытия Пифагора-математика нашли свое применение в разные времена и по всему миру. В наибольшей степени это касается теоремы Пифагора.

Например, в Китае особое внимание в этом плане следует обратить на математическую книгу Чу-пей, в которой так сказано об известном пифагоровом треугольнике, имеющем стороны 3, 4, 5: «Если разложить прямой угол на составные части, тогда соединяющая концы всех его сторон линия, будет 5, тогда как основание будет 3 и высота 4». Эта же книга демонстрирует рисунок, который аналогичен одному из чертежей в индусской геометрии Басхары.

Выдающийся немецкий исследователь истории математики Кантор считает, что равенство Пифагора 3?+4?=5? знали уже в Египте приблизительно в 2300 годах до н. э., в период правления царя Аменемхета I (в соответствии с папирусом 6619 Берлинского музея). Как считает Кантор, гарпедонапты, или так называемые «натягиватели веревок», прямые углы строили с помощью прямоугольных треугольников, стороны которых были - 3, 4, 5. Их способ построения довольно легко воспроизводится. Если взять кусок веревки длиной 12 м, привязать к нему цветные полоски – одну на трехметровом расстоянии от одного конца, а другую в 4 метрах от другого, то прямой угол будет заключен между двумя сторонами - 3 и 4 метра. Можно возразить гарпедонаптам, что такой способ построения будет лишним, если взять, к примеру, деревянный треугольник, которым пользуются все плотники. Действительно существуют египетские рисунки, например, с изображением столярной мастерской, на которых встречается такой инструмент. Но тем не менее, факт остается фактом и пифагоров треугольник использовался еще в древнем Египте.

Немногим больше сведений есть о теореме Пифагора, применяемой у вавилонян. В найденном тексте, который относят к временам Хаммураби, а это 2000 год до н. э., есть приблизительное определение гипотенузы прямоугольного треугольника. Следовательно, это подтверждает, что в Двуречье уже производили вычисления со сторонами прямоугольных треугольников, хотя бы в некоторых случаях. Математик Ван-дер-Варден из Голландии, с одной стороны, используя сегодняшний уровень знаний о вавилонской и египетской математике, и с другой, основываясь на тщательном изучении греческих источников, пришел к таким выводам: «Заслуга первых греческих математиков: Фалеса, Пифагора и пифагорейцев – не открытие математики, а ее обоснование и систематизация. Основанные на расплывчатых представлениях вычислительные рецепты они смогли превратить в точную науку».

У индусов, наряду с вавилонянами и египтянами, геометрия тесно связывалась с культом. Вполне возможно, что теорема Пифагора в Индии была известна уже в 18 веке до н. э.

«Перечень математиков», который предположительно составил Евдем, говорит о Пифагоре так: «Как сообщают, занятие данной отраслью знания (геометрией) Пифагор превратил в настоящую науку, проанализировав ее основы с высочайшей точки зрения и исследовав ее теории более умственным и менее материальным образом».

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

между сторонами прямоугольного треугольника .

Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Геометрическая формулировка теоремы Пифагора.

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата , построенного на гипотенузе , равна сумме площадей квадратов ,

построенных на катетах.

Алгебраическая формулировка теоремы Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

измерив только длины сторон прямоугольного треугольника .

Обратная теорема Пифагора.

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

треугольник прямоугольный.

Или, иными словами:

Для всякой тройки положительных чисел a , b и c , такой, что

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора для равнобедренного треугольника.

Теорема Пифагора для равностороннего треугольника.

Доказательства теоремы Пифагора.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

доказательства методом площадей , аксиоматические и экзотические доказательства (например,

с помощью дифференциальных уравнений ).

1. Доказательство теоремы Пифагора через подобные треугольники.

Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим

её основание через H .

Треугольник ACH подобен треугольнику AB C по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения:

получаем:

,

что соответствует -

Сложив a 2 и b 2 , получаем:

или , что и требовалось доказать.

2. Доказательство теоремы Пифагора методом площадей.

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

  • Доказательство через равнодополняемость.

Расположим четыре равных прямоугольных

треугольника так, как показано на рисунке

справа.

Четырёхугольник со сторонами c - квадратом,

так как сумма двух острых углов 90°, а

развёрнутый угол — 180°.

Площадь всей фигуры равна, с одной стороны,

площади квадрата со стороной (a+b ), а с другой стороны, сумме площадей четырёх треугольников и

Что и требовалось доказать.

3. Доказательство теоремы Пифагора методом бесконечно малых.


Рассматривая чертёж, показанный на рисунке, и

наблюдая изменение стороны a , мы можем

записать следующее соотношение для бесконечно

малых приращений сторон с и a (используя подобие

треугольников):

Используя метод разделения переменных, находим:

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

Интегрируя данное уравнение и используя начальные условия, получаем:

Таким образом, мы приходим к желаемому ответу:

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

(в данном случае катет b ). Тогда для константы интегрирования получим:

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что именно Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду.

Как мы видим, история математики почти не сохранила достоверных конкретных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Многим известен сонет немецкого писателя-романиста Шамиссо:

Пребудет вечной истина, как скоро

Ее познает слабый человек!

И ныне теорема Пифагора

Верна, как и в его далекий век.

Обильно было жертвоприношенье

Богам от Пифагора. Сто быков

Он отдал на закланье и сожженье

За света луч, пришедший с облаков.

Поэтому всегда с тех самых пор,

Чуть истина рождается на свет,

Быки ревут, ее почуя, вслед,

Они не в силах свету помешать,

А могут лишь, закрыв глаза, дрожать

От страха, что вселил в них Пифагор.

Исторический обзор теоремы Пифагора начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:

«Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4».

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого.

Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3І + 4І = 5І было известно уже египтянам еще около 2300 г. до н.э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея).

По мнению Кантора, гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Несколько больше было известно о теореме Пифагора вавилонянам. В одном тексте, относимом ко времени Хаммураби, т.е. к 2000 году до нашей эры, приводится приближенное вычисление гипотенузы прямоугольного треугольника; отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях.

Геометрия у индусов была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 8 века до нашей эры. Наряду с чисто ритуальными предписаниями, существуют и сочинения геометрически теологического характера, называемые Сульвасутры. В этих сочинениях, относящихся к 4 или 5 веку до нашей эры, мы встречаемся с построением прямого угла при помощи треугольника со сторонами 15, 36, 39.

В средние века теорема Пифагора определяла границу, если не наибольших возможных, то, по крайней мере, хороших математических знаний. Характерный чертеж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора или человека в цилиндре, в те времена нередко употреблялся как символ математики.

В заключение приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков.

У Евклида эта теорема гласит (дословный перевод):

В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол.

Латинский перевод арабского текста Аннариции (около 900 года до нашей эры), сделанный Герхардом Кремонским (12 век) гласит (в переводе):

«Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол»

В Geometry Culmonensis (около 1400года) теорема читается так (в переводе): «Итак, площадь квадрата, измеренного по длиной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу»

В русском переводе евклидовых «Начал», теорема Пифагора изложена так: «В прямоугольном треугольнике квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».

Как видим, в разных странах и разных языках существуют различные варианты формулировки знакомой нам теоремы. Созданные в разное время и в разных языках, они отражают суть одной математической закономерности, доказательство которой также имеет несколько вариантов.

пифагор математика теорема доказательство

Тем, кто интересуется историей теоремы Пифагора, которую изучают в школьной программе, будет также любопытен такой факт, как публикация в 1940 году книги с трехсот семьюдесятью доказательствами этой, казалось бы, простой теоремы. Но она интриговала умы многих математиков и философов разных эпох. В книге рекордов Гиннеса она зафиксирована, как теорема с самым максимальным числом доказательств.

История теоремы Пифагора

Связанная с именем Пифагора, теорема была известна задолго до рождения великого философа. Так, в Египте, при строительстве сооружений, учитывалось соотношение сторон прямоугольного треугольника пять тысячелетий назад. В вавилонских текстах упоминается о все том же соотношении сторон прямоугольного треугольника за 1200 лет до рождения Пифагора.

Возникает вопрос, почему тогда гласит история - возникновение теоремы Пифагора принадлежит ему? Ответ может быть только один - он доказал соотношение сторон в треугольнике. Он сделал то, что века назад не делали те, кто просто пользовался соотношением сторон и гипотенузы, установленным опытным путем.

Из жизни Пифагора

Будущий великий ученый, математик, философ родился на острове Самосе в 570 году до нашей эры. Исторические документы сохранили сведения об отце Пифагора, который был резчиком по драгоценным камням, а вот о матери сведений нет. О родившемся мальчике говорили, что это незаурядный ребенок, проявивший с детского возраста страсть к музыке и поэзии. К учителям юного Пифагора историки относят Гермодаманта и Ферекида Сиросского. Первый ввел мальчика в мир муз, а второй, будучи философом и основателем итальянской школы философии, направил взор юноши к логосу.

В 22 года от роду (548 г. до н. э.) Пифагор отправился в Навкратис для изучения языка и религии египтян. Далее его путь лежал в Мемфис, где благодаря жрецам, пройдя через их хитроумные испытания, он постиг египетскую геометрию, которая, возможно натолкнула пытливого юношу на доказательство теоремы Пифагора. История в дальнейшем припишет теореме именно это имя.

В плену царя Вавилона

По пути домой в Элладу, Пифагор попадает в плен царя Вавилона. Но нахождение в плену принесло пользу пытливому уму начинающего математика, ему было чему поучиться. Ведь в те годы математика в Вавилоне была более развитой чем в Египте. Двенадцать лет он провел за изучением математики, геометрии и магии. И, возможно, именно вавилонская геометрия причастна к доказательству соотношения сторон треугольника и истории открытия теоремы. У Пифагора было для этого достаточно полученных знаний и времени. Но, что это произошло в Вавилоне, документального подтверждения или опровержения тому нет.

В 530 г. до н.э. Пифагор бежит из плена на родину, где живет при дворе тирана Поликрата в статусе полураба. Такая жизнь Пифагора не устраивает, и он удаляется в пещеры Самоса, а затем отправляется на юг Италии, где в то время располагалась греческая колония Кротон.

Тайный монашеский орден

На базе этой колонии Пифагор организовал тайный монашеский орден, представлявший собой религиозный союз и научное общество одновременно. Это общество имело свой устав, в котором говорилось о соблюдении особого образа жизни.

Пифагор утверждал, чтобы понять Бога, человек должен познать такие науки как алгебра и геометрия, знать астрономию и понимать музыку. Исследовательская работа сводилась к познанию мистической стороны чисел и философии. Следует отметить, что проповедованные в то время Пифагором принципы, имеют смысл в подражании и в настоящее время.

Многие из открытий, которые делали ученики Пифагора, приписывались ему. Тем не менее, если говорить кратко, история создания теоремы Пифагора древними историками и биографами того времени, связывается непосредственно с именем этого философа, мыслителя и математика.

Учение Пифагора

Возможно, на мысль о связи теоремы с именем Пифагора натолкнуло историков высказывание великого грека, что в пресловутом треугольнике с его катетами и гипотенузой зашифрованы все явления нашей жизни. А этот треугольник является "ключом" к решению всех возникающих проблем. Великий философ говорил, что следует узреть треугольник, тогда можно считать, что задача на две трети решена.

О своем учении Пифагор рассказывал только своим ученикам устно, не делая никаких записей, держа его в тайне. К великому сожалению, учение величайшего философа не сохранилось до наших дней. Что-то из него просочилось, но нельзя сказать сколько истинного, а сколько ложного в том, что стало известно. Даже с историей теоремы Пифагора не все бесспорно. Историки математики сомневаются в авторстве Пифагора, по их мнению теоремой пользовались за много веков до его рождения.

Теорема Пифагора

Может показаться странным, но исторических фактов доказательства теоремы самим Пифагором нет — ни в архивах, ни в каких-либо других источниках. В современной версии считается, что оно принадлежит не кому иному, как самому Евклиду.

Есть доказательства одного из крупнейших историков математики Морица Кантора, обнаружившего на папирусе, хранящемся в Берлинском музее, записанное египтянами примерно в 2300 году до н. э. равенство, которое гласило: 3² + 4² = 5².

Кратко из истории теоремы Пифагора

Формулировка теоремы из евклидовых "Начал", в переводе звучит также как и в современной интерпретации. Нового в ее прочтении нет: квадрат стороны противолежащей прямому углу, равен сумме квадратов сторон, прилегающих к прямому углу. О том, что теоремой пользовались древние цивилизации Индии и Китая подтверждает трактат "Чжоу — би суань цзинь". Он содержит сведения об египетском треугольнике, в котором описано соотношение сторон как 3:4:5.

Не менее интересна еще одна китайская математическая книга «Чу-пей», в которой также упоминается о пифагоровом треугольнике с пояснением и рисунками, совпадающими с чертежами индусской геометрии Басхары. О самом треугольнике в книге написано, что если прямой угол можно разложить на составные части, тогда линия, которая соединяет концы сторон, будет равна пяти, если основание равно трем, а высота равна четырем.

Индийский трактат "Сульва сутра", относящийся примерно к VII-V векам до н. э., рассказывает о построении прямого угла при помощи египетского треугольника.

Доказательство теоремы

В средние века ученики считали доказательство теоремы слишком трудным делом. Слабые ученики заучивали теоремы наизусть, без понимания смысла доказательства. В связи с этим они получили прозвище "ослы", потому что теорема Пифагора была для них непреодолимым препятствием, как для осла мост. В средние века ученики придумали шутливый стих на предмет этой теоремы.

Чтобы доказать теорему Пифагора самым легким путем, следует просто измерить его стороны, не используя в доказательстве понятие о площадях. Длина стороны, противолежащая прямому углу - это c, а прилежащие к нему a и b, в результате получаем уравнение: a 2 + b 2 = c 2 . Данное утверждение, как говорилось выше, проверяется путем измерения длин сторон прямоугольного треугольника.

Если начать доказательство теоремы с рассмотрения площади прямоугольников, построенных на сторонах треугольника, можно определить площадь всей фигуры. Она будет равна площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырех треугольников и внутреннего квадрата.

(a + b) 2 = 4 x ab/2 + c 2 ;

a 2 + 2ab + b 2 ;

c 2 = a 2 + b 2 , что и требовалось доказать.

Практическое значение теоремы Пифагора заключается в том, что с ее помощью можно найти длины отрезков, не измеряя их. При строительстве сооружений рассчитываются расстояния, размещение опор и балок, определяются центры тяжести. Применяется теорема Пифагора и во всех современных технологиях. Не забыли о теореме и при создании кино в 3D-6D-измерениях, где кроме привычных нам 3-х величин: высоты, длины, ширины - учитываются время, запах и вкус. Как связаны с теоремой вкусы и запахи - спросите вы? Все очень просто - при показе фильма нужно рассчитать, куда и какие запахи и вкусы направлять в зрительном зале.

То ли еще будет. Безграничный простор для открытия и создания новых технологий ждет пытливые умы.

Вам также будет интересно:

Примерное расписание логопедических занятий
Многие родители, отдавая ребёнка с дефектами речи в школу, ожидают, что там с ним будет...
Презентация на тему: «Всё о Лондоне»
London Hello! Today I’m your guide. I want to tell you about London. London is the capital...
Урок географии
Урок географии по теме «Географическое положение и история открытия Австралии» Цели...
Практическое руководство по магии
Текущая страница: 1 (всего у книги 22 страниц) [доступный отрывок для чтения: 15...
Этнический состав южной америки
1. Сан-Паулу Это крупнейший по населению город Южного полушария и финансовый центр...