Строение и функции молекул ДНК и РНК

Из истории теоремы пифагора Краткое сообщение о теореме пифагора

Самые знаменитые русские в мире

Примерное расписание логопедических занятий

Презентация на тему: «Всё о Лондоне»

Урок географии "Австралия

Практическое руководство по магии

Этнический состав южной америки

Равноускоренное движение: формулы, примеры

Значение слова мальчиш-кибальчиш в литературной энциклопедии Кто написал сказку о мальчише кибальчише

Веселые герои мультфильма чаггингтон

Счетный материал «Математические кораблики Дидактические игры с математическим деревянным корабликам

Эрнан Кортес: Завоевание Мексики Фернандо кортес что открыл

Есенина Внеклассная работа по литературе

Княжества северо-восточной руси Коренными жителями Залесского края являлись угро-финские племена: мурома, меря, весь

Тема: «Основные методы селекции микроорганизмов» Пименов А.В. Глава IХ

ионизирующих излучений и ультрафиолетовых лучей наследственных изменений (мутаций). Под действием излучений возникают качественно те же мутации, что и без облучения, но значительно чаще; соотношение разных типов мутаций также может быть иным. Используется в генетических исследованиях, в селекции промышленных микроорганизмов, сельскохозяйственных и декоративных растений. Повышение частоты вредных мутаций в результате увеличения содержания в биосфере радиоактивных изотопов - одна из основных опасностей радиоактивного загрязнения биосферы. Отдельно выделена группа биологически активных веществ, которые влияют не только на процессы роста и развития растений, но и вызывают наследственные изменения в организме - химические мутагены. С помощью мутагенов можно разорвать сцепленно наследуемые признаки, преодолеть нескрещиваемость между отдаленными формами и стерильность собственной пыльцы, решить задачи, не поддающиеся разрешению при использовании других методов селекции. В ряде случаев возникают совершенно новые формы и признаки, не встречающиеся в природе, что позволяет расширить естественное разнообразие форм культурных растений.


4 Главным звеном биотехнологического процесса является биологический объект, способный осуществлять определенную модификацию исходного сырья и образовывать тот или иной необходимый продукт. В качестве таких объектов биотехноло­гии могут выступать клетки микроорганизмов, животных и расте­ний, трансгенные животные и растения, грибы, а также многокомпонент­ные ферментные системы клеток и отдельные ферменты. Основой большинства современных биотехнологических произ­водств является микробный синтез, т. е. синтез разно­ образных биологически активных веществ с помощью микроорганизмов. К сожалению, объекты растительного и животного происхождения в си­лу ряда причин еще не нашли столь широкого применения. Поэтому в дальнейшем целе­ сообразно рассматривать микроорганизмы как основные объекты биотехнологии.


1 Микроорганизмы - основные объекты биотехнологии В настоящее время известно более 100 тысяч различных видов микроорганизмов. Это в первую очередь бактерии, актиномицеты, цианобактерии. При столь большом разнообразии микроорганизмов весьма важной, а зачастую и сложной проблемой является правильный выбор именно того организма, который способен обеспечить получение требуемого продукта, т.е. служить про­мышленным целям. 5


Во многих биотехнологических процессах используется ограничен­ное число микроорганизмов, которые классифицируются как GRAS ("generally recognized as safe" обычно считаются безопасными). К таким микроорганизмам относят бактерии Васillus subtilis, Васillus amyloliquefaciens, другие виды бацилл и лактобацилл, виды Streptomyces. Сюда также относят виды грибов Aspergillus, Penicillium, Mucor, Rhizopus, дрожжей Saccharomyces и др. GRAS-микроорганизмы непатогенные, не­токсичные и в основном не образуют антибиотики, поэтому при разра­ботке нового биотехнологического процесса следует ориентироваться на данные микроорганизмы, как базовые объекты биотехнологии. 6


Микробиологическая промышленность в настоящее время использует тысячи штаммов микроорганизмов, которые первично были вы­делены из природных источников на основании их полезных свойств, а затем улучшены с помощью различных методов. В связи с расширением производства и ассортимента выпускаемой про­дукции в микробиологическую промышленность вовлекаются все новые и новые представители мира микробов. Следует отметить, что в обозримом будущем ни один из них не будет изучен в той же степени, как Е. соli и Вас. subtilis. Причина этого - колоссальная трудоемкость и высокая стоимость подобного рода исследований. 7


Следовательно, возникает проблема разработки стратегии и тактики исследований, которые обусловили бы с разумной затратой труда из­влечь из потенциала новых микроорганизмов все наиболее ценное при создании промышленно важных штаммов- продуцентов, пригодных к ис­пользованию в биотехнологических процессах. Классический подход заключается в выделении нужного микроорганизма из природных условий. Из естественных мест обитания предполагаемого продуцента отби­рают образцы материала (берут пробы материала) и производят посев в селективную среду, обеспечивающую преимущественное развитие инте­ ресующего микроорганизма, т.е. получают так называемые накопитель­ные культуры. 8


Следующим этапом является выделение чистой культуры с даль­нейшим изучением изолированного микроорганизма и, в случае необходимости, ориентировочным опреде­лением его продукционной способности. Существует и другой путь подбора микроорганизмов-продуцентов - это выбор нужного вида из имеющихся коллекций хорошо изученных и досконально охарактеризованных микроорганизмов. При этом, естест­венно, устраняется необходимость выполнения ряда трудоемких опе­раций. 9


Главным критерием при выборе биотехнологического объекта является способность синте­зировать целевой продукт. Однако помимо этого, в технологии самого процесса могут закладываться дополнительные требования, которые по­рой бывают очень и очень важными, чтобы не сказать решающими. В общих словах микроорганизмы должны обладать высокой скоростью роста, утилизировать необходимые для их жизнедеятельности дешевые субстраты, быть резидентными к посторонней микрофлоре, т. е, обладать высокой конкурентоспособностью. Все вышеперечисленное обеспечивает значительное снижение за­трат на производство целевого продукта. 10


Приведем некоторые примеры, доказывающие роль микроорганизмов как объектов биотехнологии: 1. Одноклеточные организмы, как правило, характеризуются более высокими скоростями роста и синтетических процессов, чем высшие организмы. Тем не менее, это присуще не всем микроор­ганизмам. Некоторые из них растут крайне медленно, однако представляют из­вестный интерес, поскольку способны продуцировать различные очень ценные вещества. 11


2. Особое внимание как объекты биотехнологических разработок представляют фотосинтезирующие микроорганизмы, исполь­зующие в своей жизнедеятельности энергию солнечного света. Часть из них (цианобактерии и фотосинтезирующие эукариоты) в качестве источника углерода утилизируют СО 2, а некоторые представители цианобактерий, ко всему сказанному, обладают способностью усваивать атмосферный азот (т.е. являются крайне неприхотливыми к питательным веществам). Фотосинтезирую­щие микро- организмы перспективны как продуценты аммиака, водорода, белка и ряда органических соединений. Однако прогресса в их использовании вследствие ограниченности фун­даментальных знаний об их генетической организации и молекулярно-биологических механизмах жизнедеятельности, по всей видимости, не следует ожидать в ближайшем будущем. 12


3. Определенное внимание уделяется таким объектам биотехноло­гии, как термофильные микроорганизмы, растущие при °С. Это их свойство является практически непреодолимым препятст­вием для развития посторонней микрофлоры при относительно не стерильном культивировании, т.е. является надежной защитой от загрязнений. Среди термофилов обнаружены продуценты спиртов, аминокислот, ферментов, молекулярного водорода. Кроме того, скорость их роста и метаболическая активность в 1,5-2 раза выше, чем у мезофилов. Ферменты, синтезируемые термофилами, характеризуются повышенной устойчивостью к нагреванию, некоторым окислителям, детер­гентам, органическим растворителям и другим неблагоприятным факто­рам. В то же время они мало активны при обычных температурах. 13


Так, протеазы одного из представителей термофильных микроорганизмов при 20 °С в 100 раз менее активны, чем при 75 °С. Последнее является очень важным свойством для некоторых промышленных производств. Напри­мер, широкое применение в генетической инженерии нашел фермент Tag-полимераза из термофильной бактерии Thermus aquaticus. Ранее уже упоминалось о еще одном весьма существенном свойстве этих организмов, а именно, что при их культивировании температура среды, в которой они пребывают, значительно превышает температуру окружающей среды. Данный высокий перепад температур обеспечивает быстрый и эффективный обмен тепла, что позволяет использовать био­логические реакторы без громоздких охлаждающих устройств. А по­следнее, в свою очередь, облегчает перемешивание, аэрацию, пеногашение, что в совокупности значительно удешевляет процесс. 14


2 Выделение и селекция микроорганизмов Неотъемлемым компонентом в процессе создания наи­более ценных и активных продуцентов, т.е. при подборе объектов в био­технологии, является их селекция. Главным путем селекции явля­ется сознательное конструирование геномов на каждом этапе отбора нужного продуцента. Такая ситуация не всегда могла быть реализована, вследствие отсутствия эффективных методов изменения геномов селек­ тируемых организмов. В развитии микробных технологий сыграли важную роль мето­ды, базирующиеся на селекции спонтанно возникающих измененных ва­риантов, характеризующихся нужными полезными признаками. 15


При та­ких методах обычно используется ступенчатая селекция: на каждом эта­пе отбора из популяции микроорганизмов отбираются наиболее актив­ные варианты (спонтанные мутанты), из которых на следующем этапе отбирают новые, более эффективные штаммы, и так далее. Несмотря на явную ограниченность данного метода, заключающуюся в низ­кой частоте возникновения мутантов, его возможности рано считать полностью исчерпанными. 16


Процесс селекции наиболее эффективных продуцентов значительно ускоряется при использовании метода индуцированного мутагенеза. В качестве мутагенных воздействий применяются УФ, рентгенов­ское и гамма-излучения, определенные химические вещества и др. Одна­ко и этот прием также не лишен недостатков, главным из которых явля­ется его трудоемкость и отсутствие сведений о характере изменений, по­скольку экспериментатор ведет отбор по конечному результату. 17


Напри­мер, устойчивость организма к ионам тяжелых металлов может быть свя­зана с подавлением системы поглощения данных катионов бактериаль­ной клеткой, активацией процесса удаления катионов из клетки или пе­рестройкой системы (систем), которая подвергается ингибирующему действию катиона в клетке. Естественно, знание механизмов повышения устойчивости позволит вести направленное воздействие с целью получе­ния конечного результата за более короткое время, а также селектиро­вать варианты, лучше подходящие к конкретным условиям производства. Применение пере­численных подходов в сочетании с приемами классической селекции яв­ляется сутью современной селекции микроорганизмов- продуцентов. 18


Напри­мер, устойчивость организма к ионам тяжелых металлов может быть свя­зана с подавлением системы поглощения данных катионов бактериаль­ной клеткой, активацией процесса удаления катионов из клетки или пе­рестройкой системы (систем), которая подвергается ингибирующему действию катиона в клетке. Естественно, знание механизмов повышения устойчивости позволит вести направленное воздействие с целью получе­ния конечного результата за более короткое время, а также селектиро­вать варианты, лучше подходящие к конкретным условиям производства. Применение пере­численных подходов в сочетании с приемами классической селекции яв­ляется сутью современной селекции микроорганизмов- продуцентов. 19



Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и у всех других организмов (1 мутация на 1 млн. особей по каждому гену), очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

3 слайд

Описание слайда:

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

4 слайд

Описание слайда:

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

5 слайд

Описание слайда:

Биотехнология Использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

6 слайд

Описание слайда:

7 слайд

Описание слайда:

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

8 слайд

Описание слайда:

Генная инженерия Генная инженерия - совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его в геном другого организма. Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными, бактерии и грибы - трансформированными. Традиционным объектом генной инженерии является кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста - соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

9 слайд

Описание слайда:

Процесс создания трансформированных бактерий включает этапы: Рестрикция - «вырезание» нужных генов. Проводится с помощью специальных «генетических ножниц», ферментов - рестриктаз. Создание вектора - специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки. Основой для создания вектора являются плазмиды. Ген вшивают в плазмиду с помощью другой группы ферментов - лигаз. Вектор должен содержать все необходимое для управления работой этого гена - промотор, терминатор, ген-оператор и ген-регулятор, а также маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Трансформация - внедрение вектора в бактерию. Скрининг - отбор тех бактерий, в которых внедренные гены успешно работают. Клонирование трансформированных бактерий.

10 слайд

Описание слайда:

Образование рекомбинантных плазмид: 1 - клетка с исходной плазмидой 2 - выделенная плазмида 3 - создание вектора 4 - рекомбинантная плазмида (вектор) 5 - клетка с рекомбинантной плазмидой

11 слайд

Описание слайда:

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены. Матрицей для такого синтеза является иРНК. С помощью фермента обратная транскриптаза на этой иРНК сперва синтезируется цепь ДНК. Затем на ней с помощью ДНК-полимеразы достраивается вторая цепь.

12 слайд

Описание слайда:

Хромосомная инженерия Хромосомная инженерия - совокупность методик, позволяющих осуществлять манипуляции с хромосомами. Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков (дополненные линии), или замещении одной пары гомологичных хромосом на другую (замещенные линии). В полученных таким образом замещенных и дополненных линиях собираются признаки, приближающие растения к «идеальному сорту».

13 слайд

Описание слайда:

Метод гаплоидов основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом (n = 10), затем хромосомы удваивают и получают диплоидные (n = 20), полностью гомозиготные растения всего за 2–3 года вместо 6–8-летнего инбридинга. Сюда же можно отнести и метод получения полиплоидных растений

14 слайд

Задачи урока:

  1. Повторить материал и проконтролировать знания учащихся по теме “Селекция животных”
  2. Сформировать у учащихся представление об основных методах селекционной работы с микроорганизмами.
  3. Научить школьников обосновывать значение метода искусственного мутагенеза для процесса выведения новых штаммов микроорганизмов.
  4. Познакомить учащихся с основными направлениями биотехнологии.
  5. Убедить учащихся в том, что биотехнология является гармоничным соединением современных научных знаний и практической деятельности, нацеленных на оптимальное решение народнохозяйственных проблем и задач.
  6. Продолжить развитие познавательного интереса у старшеклассников к изучению проблем современной селекции.

Оборудование: презентация, тест, кроссворды по теме “Селекция животных”, пластилин двух цветов, компьютер, диск “Биотехнология”.

План урока:

I. Организационный момент

II. Актуализация опорных знаний

III. Изучение новой темы

IV. Закрепление изученного материала

V. Домашнее задание

Ход урока

I. Организационный момент. (Вступительное слово учителя).

II. Актуализация опорных знаний.

Проводится в форме фронтального опроса. Трое учащихся получают индивидуальные задания: тест с выбором одного правильного ответа и два кроссворда. Один ученик работает у доски, пишет схему “основные методы селекции животных”, .

Вопросы для опроса:

  1. Какую тему мы рассматривали на прошлом уроке?
  2. Что такое селекция?
  3. Дайте определение сорту, породе, штамму?
  4. Какие методы используют селекционеры в работе с животными? (слайд)
  5. Искусственный отбор? Виды?
  6. Что такое гибридизация? Виды?
  7. К чему приводит инбридинг?
  8. Аутбридинг? Виды?
  9. Каким способом вывели этих животных? (слайд)
  10. Ответить на вопросы слайда.
  11. .Задание на внимательность. (слайд)

III. Объяснение нового материала.

  1. Вводное слово.
  2. Понятие о биотехнологии
  3. Свойства микроорганизмов и применение.
  4. Методы селекции микроорганизмов.

1. Вводное слово. Численность популяции любых видов живых

организмов держится примерно на одном уровне, потому что на них действует ограничивающий фактор. У человека действие ограничивающего фактора ослаблено, так как он является биосоциальным существом. (Слайд).

Удвоение численности вида Человек разумный происходит с невероятно большой для планеты скоростью. (Слайд)

В 1980 г. на Земле насчитывалось 4,5 млрд. человек, от которых ежегодно рождается 80 млн. детей. В настоящее время на планете - 6 млрд. человек. 10 млрд. человек Земля не прокормит, и встанет вопрос о регуляции численности населения! Чтобы этого не произошло, нужно удовлетворять возрастающие потребности людей в продуктах питания.(слайд)

Всех их надо одевать, поить, кормить, лечить... Какие бы мы не выводили высокопродуктивные сорта растение и породы животных, Земля не в состоянии прокормить 10 млрд. человек. Тогда перед человечеством станет вопрос о регуляции численности людей. Страшно даже подумать о том, какими методами это будет достигаться, и что будет твориться.

Конечно, природа сама старается поправить ситуацию (заработал ген гомосексуализма, рождается много генетических уродов, довольно частыми стали природные катастрофы), но… Нужны принципиально новые технологии производства. К счастью такая многоотраслевая наука недавно появилась - это биотехнология. (слайд)

2. Понятие о биотехнологии

Биотехнология - наука об использовании живых организмов, их биологических особенностей и процессов жизнедеятельности в производстве необходимых человеку веществ. Хотя эта наука молодая, но настолько важная, что даже в такой маленькой республике, как наша РСО-Алания, уже в двух ВУЗах открыты факультеты биотехнологии.

Основным объектом, используемым в биотехнологических процессах, являются микроорганизмы. Поэтому мы будем рассматривать на уроке именно методы селекции микроорганизмов.

Микроорганизмы - это группа прокариотических и эукариотических одноклеточных микроскопических организмов.

Наука, изучающая микроорганизмы, называется микробиологией.

3. Свойство микроорганизмов и применение

Если вы помните, то в предыдущих курсах биологии при рассмотрении царства Бактерии я много говорила о вреде, который приносят человечеству бактерии, вызывая пандемии и эпидемии (слайд). А сегодня я говорю вам, что они наша последняя надежда на выживание.

Так каким и же признаками должны обладать бактерии, если на них возлагается такая почетная миссия, как спасение человечества от голода, болезней и холода. (слайд)

Теперь посмотрим, где же применяются, и на что способны микробы. (слайд)

4. Методы селекции микроорганизмов

Продуктивность диких форм бактерий невысокая, поэтому человек совершенствует и выводит новые штаммы. (слайд)

В селекции микроорганизмов применяют традиционные и новейшие методы. К традиционным методам относят экспериментальный мутагенез и отбор по продуктивности. Экспериментальный мутагенез - это воздействие на организм различных мутагенов с целью получения мутации. Этот метод имеет свои особенности при селекции бактерий:

У селекционера имеется неограниченное количество материала для работы: за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить бактерий

Значительно меньшее количество генов, их генетическая регуляция более простая, взаимодействия генов просты или отсутствуют миллиарды клеток;

Более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении;

Простота генетической организации (слайд)

Но возможности традиционной селекции ограничены. Успехи же таких наук как молекулярная биология и генетика в изучении микроорганизмов, а так же возрастающие потребности практического использования микробных продуктов привели к созданию новейших методов целенаправленного и контролируемого получения микроорганизмов с заданными свойствами. (слайд)

К новейшим методам селекции относят генную инженерию. (слайд). В генной инженерии используют два способа:

Выделение нужного гена из генома одного организма и внедрение его в геном бактерий;

Синтез искусственным путем гена и внедрение его в геном бактерий. (слайд)

IV. Обобщение и закрепление полученных знаний. Проводиться с помощью вопросов.

1. Какими методами селекционеры работают с микроорганизмами?

2. Где применяются микроорганизмы?

V. Задание на дом.

Выучить §11.3.

Составить кроссворд из терминов темы.

В оставшееся время показывается кинофрагмент.

1 слайд

2 слайд

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и у всех других организмов (1 мутация на 1 млн. особей по каждому гену), очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

3 слайд

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

4 слайд

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

5 слайд

Биотехнология Использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

6 слайд

7 слайд

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

8 слайд

Генная инженерия Генная инженерия - совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его в геном другого организма. Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными, бактерии и грибы - трансформированными. Традиционным объектом генной инженерии является кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста - соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

9 слайд

Процесс создания трансформированных бактерий включает этапы: Рестрикция - «вырезание» нужных генов. Проводится с помощью специальных «генетических ножниц», ферментов - рестриктаз. Создание вектора - специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки. Основой для создания вектора являются плазмиды. Ген вшивают в плазмиду с помощью другой группы ферментов - лигаз. Вектор должен содержать все необходимое для управления работой этого гена - промотор, терминатор, ген-оператор и ген-регулятор, а также маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Трансформация - внедрение вектора в бактерию. Скрининг - отбор тех бактерий, в которых внедренные гены успешно работают. Клонирование трансформированных бактерий.

10 слайд

Образование рекомбинантных плазмид: 1 - клетка с исходной плазмидой 2 - выделенная плазмида 3 - создание вектора 4 - рекомбинантная плазмида (вектор) 5 - клетка с рекомбинантной плазмидой

11 слайд

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены. Матрицей для такого синтеза является иРНК. С помощью фермента обратная транскриптаза на этой иРНК сперва синтезируется цепь ДНК. Затем на ней с помощью ДНК-полимеразы достраивается вторая цепь.

12 слайд

Хромосомная инженерия Хромосомная инженерия - совокупность методик, позволяющих осуществлять манипуляции с хромосомами. Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков (дополненные линии), или замещении одной пары гомологичных хромосом на другую (замещенные линии). В полученных таким образом замещенных и дополненных линиях собираются признаки, приближающие растения к «идеальному сорту».

13 слайд

Метод гаплоидов основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом (n = 10), затем хромосомы удваивают и получают диплоидные (n = 20), полностью гомозиготные растения всего за 2–3 года вместо 6–8-летнего инбридинга. Сюда же можно отнести и метод получения полиплоидных растений

Вам также будет интересно:

Основные виды многогранников и их свойства
Хотя стереометрию изучают только в старших классах школы, но с кубом, правильными...
Деятельность человека и ее основные формы (труд, игра, учение)
Деятельность ­ это присущая только человеку форма взаимодействия с окружающим миром. Пока...
Как написать диктант по географии
Всероссийский географический диктант 2016 года, который состоялся 20 ноября 2016 года. Это...
Исторические факты в фильме «Иван Васильевич меняет профессию
Кто не знает эту весёлую комедию Леонида Гайдая? Таких среди россиян, пожалуй, нет. Мы...
Живая азбука, живые буквы в картинках, русский алфавит в картинках На что похожи буквы рисунок получили приз
В 1 классе после изучения всех букв алфавита детям предлагается выполнить проект "На что...