Строение и функции молекул ДНК и РНК

Из истории теоремы пифагора Краткое сообщение о теореме пифагора

Самые знаменитые русские в мире

Примерное расписание логопедических занятий

Презентация на тему: «Всё о Лондоне»

Урок географии "Австралия

Практическое руководство по магии

Этнический состав южной америки

Равноускоренное движение: формулы, примеры

Значение слова мальчиш-кибальчиш в литературной энциклопедии Кто написал сказку о мальчише кибальчише

Веселые герои мультфильма чаггингтон

Счетный материал «Математические кораблики Дидактические игры с математическим деревянным корабликам

Эрнан Кортес: Завоевание Мексики Фернандо кортес что открыл

Есенина Внеклассная работа по литературе

Княжества северо-восточной руси Коренными жителями Залесского края являлись угро-финские племена: мурома, меря, весь

В какой из этих точек производная наименьшая. В какой точке значение производной наибольшее? Нахождение интервалов возрастания и убывания функции

Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное - понять смысл.

Запомним определение:

Производная - это скорость изменения функции.

На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден - третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , - разная. Что касается Матвея - у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание - в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка - точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке - точке минимума - производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 - 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое - на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала - и после точки продолжает возрастать. Знак производной не меняется - она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется

В промежутке (а, b ), а х - является случайно выбранной точкой данного промежутка. Дадим аргументу х приращение Δх (положительное или отрицательное).

Функция у =f(x) получит приращение Δу равное:

Δy = f(x + Δx)-f(x).

При бесконечно малом Δх приращение Δу тоже бесконечно мало.

Например:

Рассмотрим решение производной функции на примере свободного падения тела.

Так как t 2 = t l + Δt, то

.

Вычислив предел, найдем:

Обозначение t 1 вводится с целью подчеркивания постоянства t при вычислении предела функции. Так как t 1 является произвольным значением времени, то индекс 1 можно отбросить; тогда получаем:

Видно, что скорость v, как и путь s , есть функция времени. Вид функции v всецело зависит от вида функции s , так что функция s как бы «производит» функцию v . Отсюда название «производная функция ».

Рассмотри еще один пример .

Найти значение производной функции:

у = х 2 при х = 7 .

Решение. При х = 7 имеем у=7 2 = 49 . Дадим аргументу х приращение Δ х . Аргумент станет равным 7 + Δ х , а функция получит значение (7 + Δ х) 2 .

Появились новые задачи. Давайте разберем их решение.

Прототип задания B8 (№ 317543)

На рисунке изображен график функции y=f(x) и отмечены точки -2, -1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Как мы знаем, называется

предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:

Производная в точке показывает скорость изменения функции в данной точке. Чем быстрее изменяется функция, то есть чем больше приращение функции, тем больше угол наклона касательной. Поскольку в задаче требуется определить точку, в которой значение производной наибольшее, исключим из рассмотрения точки с абсциссами -1 и 1 - в этих точках функция убывает, и производная в них отрицательна.

Функция возрастает в точках -2 и 2. Однако, возрастает она в них по-разному - в точке -2 график функции поднимается круче, чем в точке 2, и следовательно, приращение функции в этой точки, а, значит и производная - больше.

Ответ: -2

И аналогичная задача:

Прототип задания B8 (№ 317544)

На рисунке изображен график функции и отмечены точки -2, -1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.


Решение этой задачи аналогично решению предыдущей "с точностью до наоборот"

Нас интересует точка, в которой производная принимает наименьшее значение, то есть мы ищем точку, в которой функция уменьшается наиболее быстро - на графике это точка, в которой самый крутой "спуск". Это точка с абсциссой 4.

Вам также будет интересно:

Основные виды многогранников и их свойства
Хотя стереометрию изучают только в старших классах школы, но с кубом, правильными...
Деятельность человека и ее основные формы (труд, игра, учение)
Деятельность ­ это присущая только человеку форма взаимодействия с окружающим миром. Пока...
Как написать диктант по географии
Всероссийский географический диктант 2016 года, который состоялся 20 ноября 2016 года. Это...
Исторические факты в фильме «Иван Васильевич меняет профессию
Кто не знает эту весёлую комедию Леонида Гайдая? Таких среди россиян, пожалуй, нет. Мы...
Живая азбука, живые буквы в картинках, русский алфавит в картинках На что похожи буквы рисунок получили приз
В 1 классе после изучения всех букв алфавита детям предлагается выполнить проект "На что...