Что делает радиация с человеком – отдаленные последствия облучения. Отдаленные последствия облучения Отдаленные последствия действия ионизирующего радиации статьи

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Хроническая лучевая болезнь, отдаленные последствия действия ионизирующей радиации

Введение

лучевой болезнь радиация

В настоящее время это редкое заболевание, которое возникает в основном, при аварийных ситуациях на АЭС во время выбросов вредных веществ в атмосферу, на атомных подводных лодках и некоторых объектах стратегического назначения. Противорадиационная защита включает коллективные и индивидуальные средства защиты, строгое соблюдение правил поведения на территории зараженной местности, защиту продуктов и воды от заражения радиоактивными элементами, дозиметрический контроль и определение уровня зараженности местности.

Пренебрежение правилами безопасности взаимодействия человека, его научно-технических достижений с природой и средой обитания приводит к формированию различных опасностей и возможностью нанесения ущерба своему здоровью. Возникновение любой чрезвычайной ситуации или техногенной катастрофы вызывается сочетанием объективных и субъективных факторов, открывающих дорогу лучевой болезни, как непредсказуемой презентации ужасающих последствий для здоровья и социально-бытовых условий существования человека на Земле.

1. Понятие хронической лучевой болезни

Хроническая лучевая болезнь. Это общее заболевание организма, развивающееся в результате длительного действия ионизирующего излучения в относительно малых, но превышающих допустимые уровни дозах. Характерно поражение различных органов и систем.

В соответствии с современной классификацией хроническая лучевая болезнь может быть вызвана: а) воздействием общего внешнего излучения или радиоактивных изотопов с равномерным распределением их в организме; б) действием изотопов с избирательным депонированием либо местным внешним облучением. В развитии хронической лучевой болезни выделяют три периода: 1) период формирования, или собственно хроническая лучевая болезнь; 2) период восстановления; 3) период последствий и исходов лучевой болезни.

Первый период, или период формирования патологического процесса, составляет примерно 1 - 3 года - время, необходимое для формирования при неблагоприятных условиях труда клинического синдрома лучевой болезни с характерными для него проявлениями.

По выраженности последних различают 4 степени тяжести: I - легкую, II - среднюю, III - тяжелую и IV - крайне тяжелую. Все 4 степени являются лишь разными фазами единого патологического процесса. Второй период, или период восстановления, определяется обычно через 1 - 3 года после прекращения облучения или при резком снижении его интенсивности.

В этот период можно четко установить степень выраженности первично-деструктивных изменений и составить определенное мнение о возможности восстановительных процессов. Заболевание может закончиться полным восстановлением здоровья, восстановлением с дефектом, стабилизацией бывших ранее изменений или ухудшением.

2. Патологоанатомическая и клиническая картины

Патологоанатомическая картина. При хронической лучевой болезни происходят структурные изменения в железах внутренней секреции, центральной и периферической нервных системах, желудочно- кишечном тракте. В наибольшей степени страдают органы, в которых прежде всего реализуется энергия ионизирующей радиации. При микроскопическом исследовании выявляются нарушения в органах кроветворения. В лимфатических узлах обнаруживаются изменения в центральной части фолликулов, в костном мозге - явления аплазии.

Морфологически в крови в начальных стадиях болезни отмечается сочетаемость процессов деструкции и регенерации. При продолжающемся облучении имеют место нарушение и извращение регенерации, задержка дифференцировки и созревания клеток. В ряде органов выявляются признаки атрофии, извращение процессов регенерации. Особенностью воздействия ионизирующего излучения является его онкогенная направленность в результате мутагенного действия и общего подавления иммунной реактивности организма.

Клиническая картина. Хроническая лучевая болезнь характеризуется медленным развитием отдельных симптомов и синдромов, своеобразием симптоматики и наклонностью к прогрессированию. Ведущими симптомами являются изменения в нервной системе, кроветворном аппарате, сердечно-сосудистой и эндокринной системах, желудочно-кишечном тракте, печени, почках; происходит нарушение обменных процессов. Эффекты зависят от суммарной дозы облучения, характера распределения поглощенной дозы и чувствительности организма.

Хроническая лучевая болезнь, обусловленная общим облучением, встречается у лиц, подвергающихся воздействию ионизирующей радиации в течение 3-5 лет и получивших разовую и суммарную дозы, превышающие предельно допустимые. Одно из ранних проявлений этой формы - неспецифические реакции вегетативно-сосудистых нарушений, протекающих на фоне функционального изменения центральной нервной системы с обязательными измене- ниями в крови. Больные предъявляют жалобы на общее недомогание, головную боль, повышенную раздражительность, кровоточивость десен, и т. п. Однако в этот период все жалобы носят преходящий характер, а симптомы быстро обратимы. В дальнейшем, если эта стадия не диагностирована и больной продолжает работать в условиях воздействия ионизирующего излучения, происходит формирование болезни, проходящей все этапы своего развития. Только динамическое наблюдение за лицами с признаками отдельных симптомов, подозрительных на наличие лучевой болезни, позволяет установить их клиническую сущность и причину.

При дальнейшем развитии процесса появляются и прогрессируют симптомы общей астенизации организма, нарушение обменных процессов и различные нервно-трофические расстройства. Могут наблюдаться симптомы угнетения секреторной и моторной функций желудка и кишечника, снижение функции эндокринных желез (особенно половых), трофические нарушения кожи (снижение эластичности, сухость, ороговение) и ногтей. Резко снижается сопротивляемость организма, что способствует возникновению различных инфекционных осложнений. Особенностью является возможность развития лейкозов и злокачественных новообразований.

В зависимости от тяжести заболевания и клинического течения различают четыре степени тяжести хронической лучевой болезни.

Хроническая лучевая болезнь I (легкой) степени характеризуется ранним развитием функциональных обратимых нарушений неспецифического характера. По проявлению отдельных синдромов болезнь в этой стадии мало отличается от доклинического периода. Однако по мере формирования заболевания отмечается симптоматика многообразных нарушений нервной регуляции. Клиническая картина складывается из вегетативно-сосудистых расстройств, начальных астенических проявлений и изменений в периферической крови. Основными жалобами являются общая слабость, недомогание, головные боли, снижение работоспособности, ухудшение аппетита, нарушение сна. При объективном осмотре обращает на себя внимание: эмоциональная лабильность, стойкий красный дермографизм, дрожание пальцев вытянутых рук, неустойчивость в позе Ромберга, лабильность пульса. Один из постоянных симптомов - функциональное нарушение желудочно-кишечного тракта в виде диспепсических явлений, дискинезии кишечника и желчных путей, хронического гастрита со снижением секреторной и моторной функций желудка. Кровоточивость в этой стадии незначительна. Имеет место нарушение функции эндокринных желез - половых и щитовидной: у мужчин отмечается импотенция, у женщин - нарушение овариально-менструальной функции. Гематологические показатели отличаются лабильностью. Прежде всего уменьшается содержание лейкоцитов. При исследовании костного мозга выявляются признаки раздражения красного ростка кроветворения и белого (незначительное увеличение количества незрелых клеток миелоидного ряда), а также увеличение числа плазматических клеток. Заболевание отличается благоприятным течением, возможно полное клиническое выздоровление.

Хроническая лучевая болезнь II (средней) степени проявляется дальнейшим развитием астеновегетативных нарушений и сосудистой дистонии, угнетением функции кроветворного аппарата и выраженностью геморрагических явлений. По мере прогрессирования заболевания у больных отмечается выраженный астенический синдром, сопровождающийся головными болями, головокружением, повышенной возбудимостью и эмоциональной лабильностью, снижением памяти, ослаблением полового чувства и потенции. Более выраженными становятся трофические нарушения: дерматиты, выпадение волос, изменение ногтей. Возможны кратковременные потери сознания, приступы пароксизмальной тахикардии, озноб и обменные нарушения. Со стороны сердечно-сосудистой системы отмечаются стойкая гипотония с преимущественным снижением давления, расширение границ сердца, приглушенность сердечных тонов. Усиливается кровоточивость, которая обусловлена как повышением проницаемости сосудистых стенок, так и изменениями в крови (снижение ее свертываемости). Наблюдаются кровоизлияния в кожу и слизистые оболочки, стоматиты, множественные кожные петехии, носовые кровотечения. Оказывается нарушенной моторика желудка со снижением секреции, изменена ферментативная деятельность поджелудочной железы и кишечника; возможно токсическое поражение печени. Наибольшие изменения при данной степени хронической лучевой болезни появляются в крови. Наблюдается резкое снижение уровня лейкоцитов (до 2,0*103 /л и ниже), причем лейкопения носит стойкий характер. Более выраженными становятся признаки токсической зернистости и дегенеративных изменений нейтрофилов, тромбоцитопения. В костном мозге отмечается гипоплазия всех видов кроветворения. Заболевание носит стойкий характер.

Хроническая лучевая болезнь III (тяжелой) степени характеризуется тяжелыми, подчас необратимыми, изменениями в организме с полной потерей регенерационных возможностей тканей. Отмечаются дистрофические нарушения в различных органах и системах. Клиническая картина носит прогрессирующий характер. Болезнь может протекать длительно, могут присоединиться такие осложнения, как инфекция, травма, интоксикация. Ведущие симптомы этой формы заболевания - тяжелые поражения нервной системы и глубокое угнетение всех видов кроветворения. Больные резко астеничны, жалуются на значительную общую слабость, адинамию, постоянную головную боль, которая сопровождается приступами головокружения, тошнотой или рвотой. Появляются упорная бессонница, частые кровотечения; снижена память. Нередко выявляются признаки диффузного поражения головного мозга по типу рассеянного энцефаломиелита с изменениями двигательной, рефлекторной и чувствительной сфер. Появляются множественные геморрагии, язвенно-некротические процессы на слизистых оболочках. На месте кровоизлияний - бурая пигментация кожи. Наблюдается массивное выпадение волос, наступает полное облысение. Расшатываются и выпадают зубы. Некротические изменения можно наблюдать также на миндалинах и в гортани. Жалобы больных на одышку, приступы сердцебиение и тупые боли в области сердца находят объективное подтверждение при осмотре. Границы сердца расширены, выслушиваются глухое тоны. На ЭКГ - глубокие дистрофические изменения в мышце сердца. Резко снижается аппетит, что сочетается с диспепсическими расстройствами и геморрагическими явлениями. Определяются глубокие обменные изменения, нарушения в эндокринной системе (в надпочечниках, гипофизе, половых железах, щитовидной железе). При биохимических исследованиях крови обнаруживается снижение всех показателей обменных процессов. Обращают на себя внимание глубокие нарушения со стороны кроветворного аппарата вследствие резкой гипоплазии костного мозга. Количество лейкоцитов в периферической крови резко падает. Лимфоциты иногда не определяются. Значительно снижено число тромбоцитов. Все клетки белой крови дегенеративно изменены. Результаты исследования костного мозга свидетельствуют о резком обеднении его клеточными элементами, задержке нормального созревания костномозговых элементов, распаде клеток.

Отмечено, что присоединение к данному патологическому процессу других заболеваний, особенно воспалительных, приводит к быстрому прогрессированию сдвигов в костном мозге. Это в свою очередь становится причиной резкого ослабления сопротивляемости организма и создания условий для начала тяжелого сепсиса.

При хронической лучевой болезнь IV степени происходит быстрое и неуклонное нарастание всех болезненных симптомов. Прогноз неблагоприятный (летальный исход).

3. Диагноз

Диагностировать хроническую лучевую болезнь очень трудно, особенно в ранней стадии. Ни один из выявляемых в этом периоде симптомов не обладает специфичностью.

Симптомы вегетососудистой дистонии, явления астении, артериальная гипотензия, снижение желудочной секреции - все это может быть обусловлено рядом разнообразных причин, не имеющих отношения к воздействию ионизирующей радиации.

При постановке диагноза большое значение следует придавать санитарно-гигиенической характеристике условий труда и профессиональному анамнезу обследуемого.

Определенную ценность представляют данные динамических наблюдений и результаты дозиметрии, а также количественное определение радиоактивных веществ в выделениях организма: не только в моче и кале, но и в слюне, мокроте, желудочном соке.

4. Лечение

Больным хронической лучевой болезнью необходимо проводить комплексное лечение в зависимости от степени выраженности заболевания.

При ранних проявлениях болезни назначают щадящий режим и общеукрепляющие мероприятия: пребывание на воздухе, лечебная гимнастика, полноценное питание, витаминизация. Широко применяют физические методы лечения: водные процедуры, гальванический воротник, гальваноновокаинтерапия. Из седативных средств назначают бром, а также кальция глицерофосфат, фитин, фосфрен, пантокрин, женьшень и т. д. Если поражен кроветворный аппарат, показаны средства, стимулирующие кроветворение. При неглубоких и нестойких нарушениях кроветворения назначают витамин В12 в комбинации с натрия нуклеинатом или лейкогеном. Витамины В12 рекомендуется вводить внутримышечно по 100-300 мкг в течение 10 дней. В дальнейшем проводят симптоматическую терапию.

При лучевой болезни II (средней) степени, особенно в период обострения, рекомендуется лечение в стационаре. Помимо общеукрепляющих и симптоматических средств, применяют стимуляторы лейкопоэза (витамин B12, тезан, пентоксил, натрия нуклеинат), антигеморрагические препараты (аскорбиновая кислота в больших дозах, витамины В6, Р, К; препараты кальция, серотонин), анаболические гормоны (неробол) и т.д. Если присоединяются инфекционные осложнения, вводят антибиотики.

При тяжелых формах лучевой болезни лечение должно быть упорным и длительным. Главное внимание уделяют борьбе с гипопластическим состоянием кроветворения (многократные гемотрансфузии, трансплантация костного мозга), инфекционными осложнениями, трофическими и обменными нарушениями (гормональные препараты, витамины, кровезаменители) и т. д. Чрезвычайно сложная задача - выведение из организма радиоактивных инкорпорированных веществ. Так, при наличии в организме осколков урана используют щелочи, мочегонные и адсорбирующие средства. Рекомендуются также специальные диеты: щелочная - при инкорпорировании урана, магниевая - при инкорпорировании стронция. Для связывания и ускорения выведения изотопов назначают комплексоны (тетацин-кальций, пентацин).

5. Отдаленные последствия действия ионизирующей радиации

Соматические и стохастические эффекты, проявляющиеся черездлительное время (несколько месяцев или лет) после одноразового или в результате хроническогооблучения.

Включают в себя:

1.изменения в половой системе

2.склеротические процессы

3.лучевую катаракту

4.иммунные болезни

5.радиоканцерогенез

6.сокращение продолжительности жизни

7.генетические и тератогенные эффекты

Принято различать два типа отдаленных последствий - соматические, развивающиеся у самих облученных индивидуумов, и генетические - наследственные заболевания, развивающиеся в потомстве облученных родителей. К соматическим отдаленным последствиям относят прежде всего сокращение продолжительности жизни, злокачественные новообразования и катаракту. Кроме того, отдаленные последствия облучения отмечают в коже, соединительной ткани, кровеносных сосудах почек и легких в виде уплотнений и атрофии облученных участков, потери эластичности и других морфофункциональных нарушениях, приводящих к фиброзам и склерозу, развивающимся вследствие комплекса процессов,включающих уменьшение числа клеток, и дисфункцию фибробластов.

Следует иметь в виду, что деление на соматические и генетические последствия весьма условно, ибо на самом деле характер повреждения зависит от того, какие клетки подверглись облучению, т.е. в каких клетках это повреждение возникло - в соматических или зародышевых. В обоих случаях повреждается генетический аппарат, а следовательно, и возникшие повреждения могут наследоваться. В первом случае они наследуются в пределах тканей данного организма, обьединяясь в понятие соматического мутагенеза, а во втором - также в виде различных мутаций, но в потомстве облученных особей.

Заключение

Прочитав достаточно литературы по данной теме, я могу сделать вывод о том, что такое профессиональное заболевание, как хроническая лучевая болезнь влечет за собой печальные последствия. И очень важно знать меры по предупреждению, лечению и ликвидации данного заболевания.

Список использованной литературы

1.Гуськова А.К., Байсоголов Б.Д., Лучевая болезнь человека (Очерки), 1971.

2.Киреев П.М., Лучевая болезнь, М., 1960.

3.Москалев Ю.И. Отдаленные последствия ионизирующих излучений - М.,"Медицина", 1991

4.Романцев Е.Ф. и др. - Молекулярные механизмы лучевой болезни. М., "Медицина", 1984.

Размещено на Allbest.ru

...

Подобные документы

    Причины и этапы развития хронической лучевой болезни, ее патологоанатомическая и клиническая картины, диагностирование, способы лечения и профилактики. Особенности действия ионизирующего излучения на живые организмы. Экспертиза трудоспособности больного.

    реферат , добавлен 28.11.2010

    Периоды острой лучевой болезни - симптомокомплекса, развивающегося в результате общего однократного или относительно равномерного внешнего рентгеновского и нейтронного облучения. Развитие тяжелого геморрагического синдрома. Отдаленные последствия болезни.

    презентация , добавлен 04.07.2015

    Механизм действия на организм ионизирующей радиации. Теория липидных радиотоксинов (первичных радиотоксинов и цепных реакций). Опосредованное действие радиации. Особенности патогенетического действия на организм различных видов лучистой энергии.

    презентация , добавлен 28.09.2014

    Мероприятия по оказанию неотложной помощи при поражении электрическим током. Основные характеристики острой лучевой болезни, классификация по степени тяжести и клиническая картина в зависимости от дозы облучения, последствия для органов и систем человека.

    реферат , добавлен 20.08.2009

    Типичная (костномозговая) форма лучевой болезни. Периоды ее течения, методы диагностики и симптоматическое лечение. Скрытый период (относительного клинического благополучия). Период восстановления данной формы заболевания, лечение и прогноз для жизни.

    презентация , добавлен 10.05.2015

    Основные факторы риска хронической обструктивной болезни лёгких (ХОБЛ) и механизмы ее развития. Основные фазы течения заболевания. Легочная реабилитация при ХОБЛ. Хирургическое лечение ХОБЛ. Осложнения и последствия. Первичная и вторичная профилактика.

    реферат , добавлен 29.03.2019

    Клиническая анатомия и физиология уха. Заболевания наружного, среднего и внутреннего уха: методы исследования, результаты осмотра и отоскопия, причины и симптомы, периодизация протекания болезни, лечение заболеваний в острой и хронической фазе.

    реферат , добавлен 23.11.2010

    "Порочный круг" в патогенезе заболевания. Повреждения клетки при действии ионизирующей радиации. Механизм долговременной адаптации. Механизм возникновения ацидоза в очаге воспаления. Механизмы нарушения гемостаза при патологии печени. ДВС-синдром.

    курсовая работа , добавлен 26.10.2010

    Биологическое действие на организм ионизирующих излучений радиоактивного агента и нейтронного поражения. Острая и хроническая лучевая болезнь: периодичность течения, клинические синдромы. Костномозговая форма ОЛБ; диагностика, патогенез, профилактика.

    презентация , добавлен 21.02.2016

    Глобальная инициатива по хронической обструктивной болезни лёгких (ХОБЛ) Национального Института сердца, легких и крови США. Разработка и утверждение стратегии глобального контроля ХОБЛ. Клиническая картина заболевания, его фенотипы и факторы риска.

УДК 612.017.1:612.014.482

Ю.А. Сенникова, Л.В. Гришина, Е.Л. Гельфгат, Н.Ю. Соловьева,

С.В. Киселев, С.В. Крысов, С.В. Сенников, В.А. Козлов

ОТДАЛЕННЫЕ ПОСЛЕДСТВИЯ ВЛИЯНИЯ МАЛЫХ ДОЗ РАДИАЦИИ НА ИММУННУЮ СИСТЕМУ ЧЕЛОВЕКА

ГУ НИИ клинической иммунологии СО РАМН, Новосибирск

Изучались частота встречаемости основных иммунопатологических синдромов и состояние иммунной системы, в частности, субпопуляционная структура и пролиферативная активность мононуклеарных клеток периферической крови у жителей Угловского района Алтайского края, проживающих на территории, попавшей под воздействие ядерных испытаний на Семипалатинском полигоне. Выявлено повышение частоты инфекционного, аутоиммунного, аллергического, гематологического и онкологического синдромов у жителей Угловского района в сравнении с населением Сибири. У лиц, подвергшихся радиационному воздействию, обнаружены изменения субпопуляционной структуры и функциональных свойств им-мунокомпетентных клеток периферической крови. Выявлено достоверное увеличение сывороточных концентраций цитокинов ИЛ-1, ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-10, ФНО-а, ИНФ-у. Наиболее значимые отклонения в иммунной системе обнаружены у жителей населенных пунктов, подвергшихся большему радиационному воздействию. Обсуждается возможная роль иммунных нарушений в формировании иммунопатологических синдромов у лиц, подвергшихся воздействию ионизирующего излучения.

Ключевые слова: ионизирующее излучение, иммунная система, цитокины, CD-маркеры

Проблема последствий радиационного воздействия на здоровье населения Алтайского края в результате деятельности Семипалатинского полигона приобрела в последнее время особую актуальность. Установлено превышение смертности и распространенности заболеваний среди облученного населения Алтайского края над спонтанным уровнем. Определена зависимость «доза-эффект» для ряда заболеваний . В ответ на экстремальное воздействие радиации развиваются многообразные патологические процессы, затрагивающие различные системы и органы человека. Иммунная система обладает высокой чувствительностью к воздействию ионизирующего излучения . Воздействие ионизирующей радиации сопровождается развитием ряда изменений в иммунной системе на клеточном и субклеточном уровне, а формирующиеся дефекты лежат в основе патогенеза целого ряда заболеваний. К последствиям воздействия на организм ионизирующего облучения относят рост онкологических заболеваний, увеличение частоты аллергических заболеваний, увеличение числа хронических воспалительных заболеваний разной локализации. В патогенезе всех этих заболеваний участвует иммунная система, которая является одной из главных мишеней негативного влияния ионизирующего облучения на организм .

Целью настоящей работы явилось изучение отдаленных последствий радиационного воздейс-

твия в малых дозах на состояние иммуннои системы человека.

Методика

Исследования проводили в Угловском раИоне АлтаИского края, подвергшемся радиационному воздействию в результате испытания ядерного оружия на Семипалатинском полигоне. Обследованы лица, непосредственно находившиеся на данной территории в период 1949-1962 гг. и проживающие в следующих населенных пунктах: с. Топольное - эффективная эквивалентная доза облучения (ЭЭД) 157,1 сЗв, условно обозначенное нами как 1-я зона; с. Беленькое и с. На-умовка - ЭЭД 121,6 и 122,8 сЗв соответственно, принятые за 2-ю зону; с. Лаптев Лог - ЭЭД 63,3 сЗв, принятое за 3-ю зону. Возраст данных лиц на момент обследования составлял 49-80 лет. В качестве группы сравнения (за исключением распространенности основных иммунопатологических синдромов) использовали данные обследования условно здоровых доноров в возрасте 23-40 лет, проживающих в г. Новосибирске.

Распространенность основных иммунопатологических синдромов (ИПС) изучали при обследовании 132 жителей Угловского района. Была использована разработанная в ГУ НИИ КИ СО РАМН автоматизированная система оценки индивидуального риска иммунопатологических состояний - «АСИРИС» , которая позволяет путем обработки на персональном компьютере ре-

зультатов анкетирования определить для каждого индивида обследуемой группы количественную меру выраженности того или иного иммунопатологического синдрома. В качестве контроля использованы результаты обследования 595 человек

Жителей различных регионов Сибири соответствующего возраста. Предлагаемая система «АСИ-РИС» позволяет выявить 5 основных типов иммунопатологических синдромов: инфекционный, аллергический аутоиммунный, гематологический, онкологический. С помощью системы «АСИРИС» выявляли различные формы иммунопатологических синдромов, в том числе определенные и вероятные, которые указывают на сформировавшийся патологический синдром по совокупности анамнестических признаков; в случае определенной формы патологического синдрома сведения подтверждены диагнозом. Донозологические и малые формы указывают на наличие ряда симптомов, которые по совокупности не отражают полной клинической картины патологического синдрома.

Мононуклеарные клетки периферической крови (МНК ПК) выделяли стандартно путем центрифугирования гепаринизированной венозной крови в градиенте плотности фиколл-урографи-на (р=1,082) (фиколл - Pharmacia Fine Chemicl, Швеция, урографин - Schering, Германия) при 1500 оборотов/мин. в течение 40 минут. Клетки, собранные из интерфазы, помещали в силикони-зированные пробирки с 6 мл среды RPMI-1640 с 1% эмбриональной телячьей сыворотки (ЭТС). Этой средой отмывали клетки 3 раза путем ресуспендирования и последующего центрифугирования при 1000 оборотов/мин. в течение 10 минут.

Культивирование МНК ПК осуществлялось в 24-луночных плоскодонных планшетах (Costar, США). В каждую лунку помещали 1 мл полной культуральной среды (RPMI-1640 с добавлением 10% ЭТС, 100 мкг/мл гентамицина, 2 ммоль/л L-глутамина, 5*10-5 моль/л меркаптоэтанола, 20 ммоль/л HEPES, содержащий 1 миллион клеток. Для стимуляции МНК ПК использовали кон-канавалин А (Sigma, США) в концентрации 10 мкг/мл. Время культивирования - 48 часов при температуре 37 °С во влажной атмосфере с 5% СО2. Перед сбором кондиционной среды клетки осаждали центрифугированием в планшетах при 1000 оборотов/мин. в течение 10 мин. Собранные пробы хранились при температуре -20 °С до определения в них содержания цитокинов.

Субпопуляционную структуру иммуноком-петентных клеток периферической крови исследовали методом проточной цитофлюори-метрии с помощью моноклональных антител. Иммунофенотипирование клеток периферической крови проводили на проточном цитофлюо-

риметре FACSCalibur (Becton Dickinson, США) в программе CellQuest (Becton Dickinson, США). Использовали моноклональные антитела, меченные флюоресцентными метками - фикоэритри-ном или флуоресцеинизотиоцианатом - для определения экспрессии антигенов CD3, CD4, CD8, CD16, CD20 (МедБиоСпектр, Россия).

Пролиферативную активность мононуклеар-ных клеток периферической крови определяли стандартным методом. Выделенные МНК ПК культивировали в объеме 150 мкл в круглодонных 96-луночных планшетах (Costar, США) в конечной концентрации 0,15* 106 клеток на лунку. Для стимуляции пролиферативного ответа МНК использовали конканавалин А в конечной концентрации 10 мкг/мл. Интенсивность пролиферации оценивали через 72 часа по включению 3Н-тимидина в нуклеопротеидные фракции клеток. 3Н-тимидин вносили по 1 мкКи/лунку за 6 часов до конца культивирования, клетки осаждали на фильтры с помощью прибора Cell Harvester (Flow Laboratories, Великобритания). Подсчет радиоктивности экспериментального материала производили в жидкостном сцинтиляционном счетчике SL-30 (Intertechnic, Франция). Результаты представили в виде среднего счета (импульсы/мин.) из трех идентичных культур.

Концентрацию цитокинов определяли элект-рохемилюменисцентным методом при использовании «ORIGEN-Analyser» (IGEN Inc., USA) по методике, описанной ранее . Поликлональные и моноклональные антитела приобретали у фирмы R&D Systems (Великобритания). Для построения калибровочных кривых были использованы рекомбинантные цитокины человека ФНО-а, ИЛ-1Р, ИЛ-6, ИЛ-2, ИЛ-4, ИЛ-10 (R&D Systems, Великобритания) и ИФНу (Thomae-Biberach/ Riss, Германия).

Для статистической проверки гипотез о достоверности различий между группами данных использовали непараметрические критерии Манн-Уитни, Колмогорова-Смирнова, критерий таблицы 2*2, так как исследуемые выборки не подчинялись нормальному распределению. Данные представлены в виде средней и стандартной ошибки средней (M±m) и в виде медианы (Ме) и размаха квартилей.

Результаты

В результате проведенных исследований по системе «АСИРИС» установлено, что различные формы ИПС выявлены у 95,3% обследованных, что достоверно выше в сопоставлении со стандартом, разработанным для населения Сибири (79,6%) (рис. 1А). Частота выявляемости определенных и вероятных иммунопатологических синдромов (58,7%) у жителей Угловского района так-

же оказалась достоверно выше, чем в контрольной группе (р<0,001). В дальнейшем анализировали частоту встречаемости только определенных и вероятных иммунопатологических синдромов, для которых можно говорить уже о сформированной иммунопатологии.

Анализ структуры иммунопатологических синдромов у жителей Угловского района выявил достоверное повышение частоты встречаемости всех форм ИПС в сравнении с контролем, причем наибольшие значения определяли для аутоиммунного (36,3 %) и инфекционного (23,2%) синдромов (рис. 1В).

В целом можно заключить, что у лиц, непосредственно попавших под след ядерного взрыва августа 1949 г., наблюдается повышение частоты инфекционного, аутоиммунного, аллергического, гематологического и онкологического синдромов в сравнении с населением Сибири. Этот факт может свидетельствовать о наличии дефектов в иммунной системе у обследуемой группы.

Анализ субпопуляционной структуры имму-нокомпетентных клеток периферической крови в обследованных группах выявил рост содержания клеток с фенотипом СЭ3+ с увеличением дозы радиационного воздействия (рис. 2). Статистически значимых изменений в содержании субпопуляции Т-хелперов (СЭ4+) во всех трех исследуемых зонах не обнаружено. Содержание клеток, экспрессирующих СЭ8, снижено у жителей 1-й зоны в сравнении с содержанием этих клеток у жителей 2-й зоны. Различий в содержании СЭ8+-клеток у лиц, проживающих в 3-й зоне, не выявлено.

группами.

Таким образом, полученные результаты свидетельствуют об изменениях субпопуляционной структуры иммунокомпетентных клеток в отдаленные сроки у лиц, подвергшихся влиянию малых доз радиации. Наиболее значимые изменения выявлены в содержании CD3+- и CD16+-клеток, количество которых возрастает с увеличением дозы радиационного воздействия, и CD20+-кле-ток, для которых прослеживается тенденция к снижению.

Функциональные свойства лимфоцитов оценивали по пролиферативной активности МНК ПК и их способности к продукции иммунорегу-ляторных цитокинов in vitro (ФНО-а, ИЛ-2 и ИЛ-4). Установлено, что пролиферативная активность МНК ПК в ответ на митоген (конканавалин А) повышается с возрастанием дозы радиационного воздействия, причем различия показателя достоверны между всеми зонами (рис. 3). Высшие значения конканавалин А-индуцированной пролиферативной активности зарегистрированы у жителей 1-й зоны (максимальная ЭЭД). Следует отметить, что контрольную группу для обследуемого контингента облученных лиц, возраст которых составляет свыше 49 лет, подобрать практически невозможно, но если показатели пролиферативной активности МНК ПК у обследуемых сравнить с группой условно здоровых доноров (средний возраст 25-30 лет), они оказываются достоверно выше (данные не приводят-

6єз ИПС Bce фopмы и группы oпpeдeлeн.+вepoят. дoнoзoл.+малыe сИПС ИПС ИПС

■ пoдвepгшиecявлияниюмалыхдoзpадиации □ кoнтpoль

I подвергшиесявлияниюмалыхдозрадиации □ контроль

Рис. 1. Распространенность иммунопатологических синдромов (ИПС) у лиц, подвергшихся влиянию малых доз радиации:

А - общая характеристика распространенности ИПС;

В - структура ИПС.

Примечание: *** - имеется статистически значимое различие с контрольной группой р<0,001.

Таблица 1

Спонтанная и митогениндуцированная продукция цитокинов мононуклеарными клетками периферической крови лиц, подвергшихся воздействию малых доз радиации (М±т)

Продукция цитокинов, иг/мл 1-я зона (n=28) 2-я зона (n=29) 3-я зона (n=24)

ФНО-а спонтанная 215,0±156,34 643,7±494,55 1155,0±471,80

ФНО-а стимулированная 7132,1±1078,44 6218,6±957,93 7049,7±1483,2

ИЛ-4 спонтанная 2399,5±455,97 913,5±164,67 606,3±182,85

ИЛ-4 стимулированная 4119,9±894,95 1434,3±294,82 552,6±162,51

ИЛ-2 спонтанная 218,1±137,1 231,6±91,57 603,8±99,2

ИЛ-2 стимулированная 265,9±153,27 129,7±46,78 559,9±131,55

ся). Полученные результаты свидетельствуют об изменениях в функциональном состоянии МНК ПК. Данный факт находит отражение и в изменении способности иммунокомпетентных клеток к продукции основных иммунорегуляторных цито-кинов. Так, во всех обследованных группах конка-навалин А стимулировал МНК ПК к мощнейшей продукции ФНО-а (таблица 1) - 6218,6-7132,1 пг/мл, в несколько десятков раз превосходящей показатель в группе условно здоровых доноров (199,0 пг/мл). Эти данные согласуются с данными, полученными ранее, в которых показано, что у жителей Угловского района с увеличением ЭЭД возрастает количество лиц с положительной экспрессией мРНК провоспалительных цитокинов, в том числе ФНО-а, в интактных МНК ПК . Поскольку ФНО-а является маркером воспаления, способность клеток к его гиперпродукции на стимулирующий фактор, несомненно, является предрасположением к хронизации воспалительных процессов.

При оценке продукции цитокинов Т-хелпера-ми 1-го (Тх1) и 2-го (Тх2) типов в культуре МНК ПК наблюдается иная картина (таблица 1). Показано, что МНК ПК исследуемых лиц не отвечают на стимуляцию митогеном продукцией цитокинов Тх1 и Тх2, необходимых для формирования полноценного гуморального и клеточного иммунного ответа. Эти изменения функциональных свойств иммунокомпетентных клеток могут приводить к выраженной воспалительной реакции за счет повышенной продукции ФНО-а на антигенные стимулы и к формированию неполноценного гуморального и клеточного иммунного ответа, так как стимуляции продукции цитокинов Тх1 и Тх2 в ответ на митоген не регистрируется.

При исследовании сывороточного уровня ци-токинов наиболее выраженные изменения были обнаружены для провоспалительного медиатора ИЛ-1Р (таблица 2). Содержание других провоспа-лительных цитокинов - ИЛ-6 и ФНО-а - также было повышено в сыворотке крови у всех обсле-

ЗІЙЇЕЇїЗЕ;

CD3+ CD4+ CD8+ CD20+ CD16+

Рис. 2. Субпопуляционная структура иммунокомпетентных клеток периферической крови жителей Угловского района (M±m).

^ - статистически достоверное различие между исследуемыми группами при * - р<0,05; ** - р<0,01; *** - р<0,001.

□ спонтанная □ стимулированная

Рис. 3. Спонтанная и митогениндуцированная пролиферативная активность мононуклеарных клеток периферической крови у жителей Угловского района (M±m).

Различие с контрольной группой статистически достоверно: ** - р<0,01; *** - р<0,001. ^ - статистически достоверное различие между группами при р<0,05.

дованных групп (таблица 2). При этом у людей, подвергшихся большему радиационному воздействию (1-я зона), концентрация ФНО-а в сыворотке крови была наименьшей (медиана 19,6 пг/мл). И наоборот, в группе, подвергшейся меньшему радиационному воздействию (3-я зона), концентрация ФНО-а была наибольшей (медиана 1437,4 пг/мл). Снижение сывороточных концентраций ФНО-а у жителей 1-й зоны совпадает с данными по спонтанной продукции ФНО-а МНК ПК в культуре (таблица 1), которая у жителей 1-й зоны была минимальной. Сывороточный уровень ИЛ-6 у жителей во всех трех зонах достоверно превышал нормальные показатели, но незначительно. Полученные нами результаты согласуются с данными о повышении уровня экспрессии мРНК ИЛ-1Р, ФНО-а и ИЛ-6 в интактных МНК ПК, полученными ранее на этой же группе обследованных .

Другой группой важных медиаторов, которые были изучены и от которых в значительной степени зависит развитие иммунной реакции преимущественно по клеточному или гуморальному типу, являются цитокины, продуцируемые клетками Тх1 и Тх2. В норме существует определенный баланс в продукции этих цитокинов, обеспечивающий функционирование различных звеньев иммунной системы. Изменение в профиле продуцируемых цитокинов свидетельствует об активации иммунной системы и при устойчивых изменениях может указывать на формирование иммунопатологических состояний.

При анализе содержания цитокинов, продуцируемых Тх1, показано, что концентрация ИЛ-2 в сыворотке крови обследованных жителей Уг-ловского района достоверно выше в сравнении с показателями контрольной группы (таблица 2). У лиц из населенных пунктов с различной ЭЭД изменения содержания ИЛ-2 в сыворотке крови

имеют сходный характер. Уровень ИФН-у (таблица 2) в сыворотке крови жителей Алтайского края достоверно увеличен в 1-й, 2-й зонах и в совокупности групп в целом в сравнении с группой условно здоровых доноров.

Изучение содержания ИЛ-4 (таблица 2) в сыворотке крови жителей Угловского района Алтайского края обнаружило увеличение концентрации цитокина у всей группы обследованных. При исследовании содержания ИЛ-4 в сыворотке крови лиц, проживающих в отдельных населенных пунктах, в 1-й и 3-й зонах выявлено достоверное увеличение показателя. Во 2-й зоне значение медианы ниже, чем у здоровых доноров, но большой размах квартилей свидетельствует о повышенном значении уровня ИЛ-2 у значительного процента обследуемых. Содержание ИЛ-10 в сыворотке крови жителей Алтайского края, подвергшихся радиационному воздействию, как в целом, так и отдельно по населенным пунктам, достоверно увеличено, что аналогично характеру изменений, выявленных для других изученных цитокинов (таблица 2).

Заключение

Таким образом, на фоне повышенной распространенности иммунопатологических синдромов нами выявлен ряд изменений количественных и функциональных свойств иммунокомпетентных клеток у обследованных. У лиц, подвергшихся радиационному воздействию, наблюдается повышенная пролиферативная активность мононукле-арных клеток и продукция ФНО-а в ответ на ми-тоген, в то же время продукция цитокинов Тх1 и Тх2 (ИЛ-2 и ИЛ-4) практически не меняется или даже снижается после активирующего стимула.

В сыворотке крови лиц, подвергшихся радиационному воздействию, выявлено увеличение содержания провоспалительных цитокинов ИЛ-1р,

Таблица 2

Цитокины, пг/мл Здоровые доноры (п=17) 1-я зона (п=38) 2-я зона (п=36) 3-я зона (п=31) 1-я, 2-я, 3-я зоны (п=105)

ИЛ-1р 7,6 (20,7)*** 2449,1 (29851,5)*** 1338,2 (5078,9)*** 786,2 (6479,6)** 1204,6 (9785,6)***

ФНО-а 21,5 (38,5) 19,6 (243,9)* 1043,9 (11467,8)*** 1437,4 (5029,7)*** 280,5 (3270,5)***

ИЛ-6 5,7 (59,6) 9 5 (85,9)* 16,4 (108,2)* 36,2 (1193,7)* 6,6 (91,8)*

ИЛ-2 5,8 (19,4) 119 (316,6)* 171 (21)* 220,5 (40)* 180 (107)*

ИФН-у 0 (19) 18,9 (423,3)*** 16,9 (570,4)* 0 (172,2) 12,1 (332,6)**

ИЛ-4 6,7 (37,5) 42,7 (371,7)* 1,3 (581,1)* 57 5 (308,5)* 35,0 (391,3)*

ИЛ-10 14,3 (58,7) 130,5 (46)*** 191,0 (204,0)*** 250,0 (47,5)*** 178,0 (118)***

Примечание: *** - имеется достоверное отличие с группой условно здоровых доноров р<0,001, ** - р<0,01; * р<0,05. Данные представлены в виде: медиана (размах квартилей)

ИЛ-6 и ФНО-а, причем наиболее значимые изменения обнаружены для ИЛ-1р. Также выявлено повышение содержания цитокинов, продуцируемых как Тх1 (ИЛ-2 и ИНФ-у), так и Тх2 (ИЛ-4, ИЛ-10), что свидетельствует об активации иммунной системы. Это повышение не столь выражено, как для провоспалительных цитокинов и в определенной степени может быть следствием повышения провоспалительных медиаторов, высокий уровень которых приводит к изменению баланса цитокинов и установлению его на другом, более высоком уровне. С другой стороны, повышенный уровень цитокинов Тх1 и Тх2 типа в сыворотке крови жителей Угловского района сопровождается ростом частоты встречаемости таких иммунопатологических синдромов, как инфекционный, аллергический, аутоиммунный, в формировании которых участвуют как механизмы клеточного, так и гуморального иммунитета, которые как раз и регулируются изученными нами цитокинами.

Можно заключить, что у жителей всех обследованных населенных пунктов, подвергшихся радиационному воздействию в результате деятельности Семипалатинского полигона, выявлены изменения как количественных, так и функциональных параметров иммунокомпетентных клеток периферической крови, причем наиболее значимые отклонения обнаружены у жителей населенного пункта с максимальным значением ЭЭД. Выявленные изменения в субпопуляцион-ной структуре и функциональных свойствах им-мунокомпетентных клеток и уровне цитокинов, безусловно, лежат в основе регистрируемого роста частоты встречаемости иммунопатологических синдромов и свидетельствует о глубоких изменениях в иммунной системе.

The distant consequence of low radiation doses influence on human immune system

J.A. Sennikova, L.V. Grishina, E.L. Gelfgat,

N.Yu. Solovyeva, S.V. Kisselev, S.V. Krysov,

S.V. Sennikov, V.A. Kozlov

The prevalence of primary immunopathologic syndromes and immune system status (subpopulation structure, proliferation activity of PBMC, cytokine production) in population of the Altai region, which exposed to nucleic testing of Semipalatinsk Test Site were studied. We discovered that preva-

lence of infection, autoimmune, allergic, haemato-logic and oncologic syndromes in the investigated population were increased in comparison with siberian population. The modifications of subpopulation structure and functional properties of peripheral blood immunocompetent cells were found in the persons exposed to radiation influence. We are determined significant increase serum levels of IL-i, -2, -4, -6, -10, TNF-а, IFN-y. These modifications positively correlate with value of radiation dose. The possible role of immune disorders in the immunopathologic syndromes formed in the persons, which exposed to low dose rate radiation.

Литература

1. Гельфгат ЕЛ. Методика автоматизированной оценки индивидуального риска иммунопатологических состояний (тест АСИРИС): Метод. разработка / Е.Л. Гельфгат, М.Ю. Тузов, В.И. Коненков. - Новосибирск, 1990. - 36 с.

2. Иммунная система населения, подвергшегося радиационному воздействию на следе ядерного взрыва / Я.Н. Шойхет, В.А. Козлов, В.И. Коненков и др. - Барнаул. - 2000. - 179 с.

3. Козлов В.А. Экспрессия генов основных медиаторов иммунной и кроветворной систем у лиц, подвергшихся радиационному воздействию / В.А. Козлов, Л.В. Гуськова, Ю.А Сенникова // Вестник научной программы «Семипалатинский полигон - Алтай». - 1995.

- № 2. - С. 58-64.

4. Радиационное воздействие на население Алтайского края ядерных испытаний на Семипалатинском полигоне / Я.Н. Шойхет, В.И. Киселев, В.М. Лоборев и др. - Барнаул. - 1999. - 345 с.

5. Шарецкий А.Н. Влияние малых доз ионизирующей радиации на тимусзависимый гуморальный иммунный ответ и поликлональную активацию В-лимфо-цитов / А.Н. Шарецкий, Б.П. Суринов, М.Р. Абрамова // Радиац. биология. Радиоэкология. - 2000. - Т. 40.- № 2. - С. 168-172.

6. Dainiak N. Hematologic consequences of exposure to ionizing radiation // Exp. Hematol. - 2002. - Vol. 30.

7. Modification of immune response by low dose radiation: role of apoptosis / B. Shankar, S. Premachandran, S.D. Bharambe et al. // Immunology Lett. - 1999. - Vol. 68. - P. 237-245.

8. Quantitative analysis of human immunoregulatory cytokines by electrochemiluminescence method / S.V. Sennikov, S.V. Krysov, T.V. Injelevskaya et al. // J. Immun. Methods. - 2003. - Vol. 275. - № 1-2. - P. 81-88.

Одна из характерных особенностей лучевых поражений состоит в том, что у людей через 10-20 лет и более после облучения в «выздоровевшем» и, казалось бы, полностью восстановившемся от лучевого поражения организме вновь возникают различные изменения, которые называют отдалёнными последствиями облучения. Особенностью заболеваний, относящихся к отдалённым последствиям является то, что они возникают как после местного, так и после общего (внутреннего и внешнего) облучения. Различают соматические и генетические отдалённые последствия. Основными соматическими последствиями облучения является сокращение продолжительности жизни, возникновение лейкозов, злокачественных опухолей, катаракты, стерильности.

Различают неопухолевые и опухолевые формы отдалённых последствий.

Неопухолевые формы включают три вида патологических процессов:

1. Гипопластические состояния – развиваются главным образом в кроветворной ткани, слизистых оболочках органов пищеварения, дыхательных путей, в коже и других органах. Эти нарушения возникают при накоплении высоких доз излучения (3-10 Гр) как при внешнем гамма-облучении, так и поражении инкорпорированными радионуклидами. Основными нарушениями являются: гипо- или гиперхромные анемии, лейкопения, атрофия слизистой оболочки желудка, кишечника, гипо- или анацидный гастрит, атрофия половых желез и бесплодие (стерильность).

2. Склеротические процессы. Происходит обширное и раннее повреждение сосудистой сети облучённых органов, развитие очаговых или диффузных разрастаний соединительной ткани на месте погибших паренхиматозных клеток. Основные нарушения: цирроз печени, нефросклероз, пневмосклероз, атеросклероз, лучевые дерматиты, лучевые катаракты, некрозы костной ткани, поражения нервной системы.

3. Дисгормональные состояния развиваются без видимой дозовой зависимости. К проявлениям дисгормональных состояний относятся ожирение, гипофизарная кахексия, несахарный диабет, кистозные изменения яичников, патологические сдвиги в половых циклах, гиперплазия слизистой оболочки матки, паренхимы молочных желез (что может привести к развитию опухолей), поражения щитовидной железы (гипотиреодизм, новообразования), сахарный диабет и др.

Опухолевые формы. К ним относятся опухоли, развивающиеся по прямому механизму (возникают чаще при облучении инкорнорированными альфа- и бета-излучателями) – опухоли костей, печени, почек, лёгких, кожи. Другой разновидностью являются дисгормональные опухоли вследствие нарушения равновесия в функции эндокринных желез – опухоли матки, яичников, предстательной желе, самих желез внутренней секреции. И, наконец, имеются опухоли сложного генеза, возникающие в результате сочетания прямого и дисгормонального механизмов – лейкозы, опухоль молочных желез.

Рассмотрим основные соматические отдалённые последствия . Самым общим из отдалённых эффектов является сокращение продолжительности жизни . Выявлена прямая пропорциональная зависимость между дозой радиации и степенью укорочения жизненного цикла. Экспериментально доказано, что у человека при однократном облучении сокращение продолжительности жизни составляет 0,1-1,5 суток на каждый миллизиверт. Если радиация действует не одномоментно, а длительно, на протяжении всей жизни, непрерывно, то сокращение жизни удаётся зарегистрировать, начиная с суммарных недельных доз в 10 рад гамма-излучения или 1 рад нейтронного облучения. Укорочение жизни лиц, перенесших атомную бомбардировку в Хиросиме и Нагасаки, относится за счёт увеличения заболеваемости лейкозами и опухолями. В отчёте комиссии ООН за 1964 г. отмечается, что заболеваемость лейкозами в Японии с 1946 по 1960 г. выросла с 10,7 до 28 на 1 млн жителей. При этом вероятность заболевания уменьшалось с увеличением расстояния от эпицентра взрыва, т.е. со снижением дозы.

Злокачественные новообразования под влиянием облучения могут возникать практически во всех органах. Наиболее часто наблюдаются лейкозы, развитие которых происходит через 5-25 лет после облучения. Частота лейкозов у облучённых по сравнению с необлучёнными возрастает в 5-10 раз. В диапазоне 3-15 Гр каждому Гр соответствует увеличение заболеваемости на 50 случаев на 1 млн. человек в год.

Позже возникают другие раковые заболевания (рак щитовидной железы, молочной железы, яичников, желудка и лёгких), главным образом в результате общего лучевого воздействия. Опухоли кожи и костей являются результатом местного облучения – внешнего (кожа) или внутреннего (кости). При хроническом облучении малыми дозами развитие злокачественных опухолей в 3-10 раз ниже, чем при однократном воздействии той же дозы. Детский организм в силу анатомо-физиологических особенностей и большой чувствительности к действию ионизирующего излучения в большей степени подвергается риску (что видно на примере рака щитовидной железы у детей). Сокращается и время появления раковых новообразований у детей по сравнению со взрослыми.

Возникновение катаракты (помутнения) хрусталика – типичное отдалённое последствие тотального облучения организма или местного облучения глаза и хрусталика. Особенно часто катаракты появляются при длительном нейтронном облучении. В Хиросиме катаракты возникали в 25-30% случаев у находившихся в 4 км от эпицентра взрыва (спустя несколько месяцев и до 12 лет и более). Минимальная пороговая доза рентгеновских лучей при однократном воздействии – 2 Гр, при хроническом воздействии в течение нескольких лет облучения катаракта развивается при дозах, превышающих 0,3 Зв в год.

К отдалённым последствиям облучения относится также нефросклероз , развивающийся в результате повреждения почечной ткани и замещении её соединительной тканью. Стойкое повышение АД, характерное для лучевого поражения, в значительной степени зависит от развития нефросклероза.

Радиобиологические эффекты облучения живого организма делятся на пороговые (нестохастические) и беспороговые (стохастические). Радиационными эффектами нестохастического характера, следует считать, прежде всего, острую лучевую болезнь, местные повреждения кожи (ожоги), лучевую катаракту, стеризизацию, дистрофические повреждения различных тканей. При этом имеется определённое пороговое значение дозы облучения (например, при одноразовом воздействии радиации в 100 рад), ниже которого видимого действия радиации не наблюдается.

Такие нарушения, как опухоли различной локализации, лейкозы, генетические эффекты, умственная отсталость, уродства носят стохастический беспороговый характер. Вероятность возникновения этих поражений существует при самых минимальных дозах облучения.

Отдалённые последствия облучения - различные изменения, которые возникают в отделённые сроки (10-20 лет и более) после лучевой болезни в организме внешне полностью «выздоровевшем» и восстановившемся от лучевого поражения. Выделяют последствия соматические (опухолевые и неопухолевые) и генетические. При оценке возможных последствий облучения следует учитывать стохастические и нестохастические эффекты.

Стохастические эффекты - последствия, носящие вероятностный, случайный характер. Вероятность их проявления существует при малых дозах ИИ и возрастает с дозой, но тяжесть проявления облучения от дозы не зависит. К последствиям этого характера относят:

  • а) злокачественные новообразования, лейкозы, обуславливающие главный риск соматических последствий облучения в небольшой дозе. Они выявляются лишь при длительном наблюдении (15-30 лет) за большими группами населения (десятки, сотни тысяч человек). Так, в частности, обнаружено, что в отдалённые сроки после облучения (9-11 лет) возрастает частота случаев возникновения гемобластозов. Злокачественные новообразования, как показали экспериментальные исследования и клинические наблюдения, могут возникать после облучения во всех органах. Наиболее часто - это опухоли кожи, костей, рак молочной железы, яичников, лейкозы. При этом опухоли кожи и костей возникают чаще при местном облучении, а остальные - в результате тотального облучения, внешнего или внутреннего. Для сомато-стохастических эффектов характерен длительный латентный период. Для лейкозов он составляет 10 лет, для других форм опухолей 15-30 лет. Так для опухолей молочной железы у жителей Хиросимы и Нагасаки он составил примерно 18 лет;
  • б) наследственная патология, проявляющаяся у потомства облучённых индивидов, является следствием повреждения генома половых клеток. Для выявления этих эффектов необходим анализ множества популяций, включающий целый ряд поколении потомков облучённых животных. Изменения в генетическом аппарате - «генетический груз» в настоящее время обнаруживается у новорожденных во многих странах. Для жизнеспособности общества опасными являются условия, увеличивающие «генетический груз» в 2 раза. По данным научного комитета ООН по действию атомной радиации «удваивающая доза» облучения для человека - 0,7 Гр.

Нестохастические эффекты - последствия, проявляющиеся после накопления дозы больше пороговой. В этом случае тяжесть поражения изменяется в зависимости от дозы (лучевая катаракта, нарушения репродуктивной функции, косметические дефекты кожи, склеротические и дистрофические поражения соединительной ткани, поражения зародыша и плода). Всем видам животных свойственно сокращение продолжительности жизни и, как показали экспериментальные исследования, существует прямая зависимость между степенью сокращения продолжительности жизни и дозой излучения. Экстраполирование экспериментальных данных показало, что у человека на каждые 0,01 Гр сокращение продолжительности жизни составит при однократном облучении 1-15 суток, а при хроническом воздействии - 0,08 суток. Анализ продолжительности жизни жертв атомной бомбардировки показал, что в основном сокращение продолжительности жизни объясняется возникновением лейкозов и опухолей.

Таким образом, при рассмотрении мутагенного действия ИИ необходимо отличать радиационно-генетические эффекты, возникающие в соматических клетках, от таковых в половых. Поражение генома соматических клеток приводит к возникновению лейкозов, рака и преждевременному старению, т.е. затрагивает только облученный организм, а следующим поколениям не передаётся. Радиационные эффекты в зародышевых клетках ведут к образованию генетически ненормальных гамет, вследствие чего может произойти гибель зиготы или эмбриона на разных стадиях развития, рождение особей с наследственными аномалиями или особей, несущих в гетерозиготном состоянии новые, часто неблагоприятные для организма гены. Таким образом, мутагенный эффект, вызываемый облучением в половых клетках, передается из поколения в поколение.

Отдаленные последствия облучения феноменологически близки к таковым при старении. Злокачественные опухоли, катаракты, склероз сосудов, поседение и др. при облучении наступают в более раннем возрасте, продолжительность жизни сокращается, возникает ускоренное радиационное старение (но оно не тождественно нормальному процессу старения). При дозах, вызывающих гибель 50% и более клеток, у потомства большинства выживших клеток изменен генотип, они генетически нестабильны. Это отрицательно сказывается на функциональной активности и жизнеспособности целостного организма. Неполноценность пострадиационного восстановления организма облученных животных усугубляет неблагоприятное влияние внешних факторов, приводит к быстрому изнашиванию организма, возрастанию подверженности заболеваниям, сокращению продолжительности жизни.

Согласно структурно-метаболической теории, лучевое старение так же как и естественное старение - результат необратимых изменений во многих системах организма, многофакторное явление. Одной из существенных причин как естественного, так и лучевого старения организма является накопление «ошибок) в строении генома, как его суперспирализации, так и в первичной структуре ДНК. Облучение организма резко увеличивает количество клеток с нерепарабельными повреждениями ДНК и, тем самым, «переводит часы старения вперед». На основании многих исследований можно сделать вывод, что сокращение сроков жизни как одно из характерных отдаленных последствий облучения, является интеграционным показателем взаимодействия радиационного изменения ряда структур и метаболических процессов в облученном организме с нормально протекающими процессами старения (табл. 7).

Описанные изменения не являются специфическими для лучевого поражения организма, они лишь следствие пониженной резистентности, в результате чего увеличивается частота возникновения заболеваний человека. Уменьшение продолжительности жизни, вызываемое облучением обусловлено ускорением наступления смерти от всех причин вообще.

Таким образом, можно говорить о следующих механизмах формирования отдаленных последствий облучения:

  • - Накопление повреждений в генетическом аппарате соматических и половых клеток;
  • - Эпигеномные нарушения;
  • - Нарушения нейро-эндокринной регуляции, определяющие снижение адаптационных возможностей организма.

Непрерывное расширение применения ионизирующих излучений в различных областях науки и техники, сельского хозяйства и медицины неизбежно приводит к облучению значительных групп людей. Такое облучение происходит преимущественно в малых дозах.

Таблица 7. Причины уменьшения средней продолжительности жизни после облучения (по Ю.И. Москалеву, 1991)

Авария на Чернобыльской АЭС (ЧАЭС) выдвинула на первый план проблему действия на организм малых доз ИИ. Под малыми дозами понимают дозы, не угрожающие непосредственно жизни и даже не угрожающие непосредственно болезнью; это дозы однократного радиационного воздействия, не превышающие 0,5 Гр (500 Рад). Острое облучение в диапазоне от 0,1 - 0,7 Гр может сопровождаться возникновением временной «лучевой реакции», которая проявляется в состоянии дискомфорта, общей слабости, вегетативной лабильности, незначительных колебаний числа лейкоцитов, кратковременной тромбоцитопении.

В отношении влияния на организм малых доз существуют противоречивые мнения. Ряд исследователей отрицает существенно вредное влияние малых доз ионизирующей радиации. Так, А.М. Кузин (1985) считает, что повреждения важных молекул и субклеточных структур, вызванные малыми дозами, могут быть полностью компенсированы благодаря функционированию специальных репаративных систем клетки. Открыты мощные ферментные комплексы, обеспечивающие восстановление разрывов в молекулах ДНК. По мнению ученого, при малых дозах ИИ эти системы могут успешно справляться с пострадиационными дефектами генома клетки.

Однако, доказано, что малые дозы радиации, не оказывающие заметного физиологического влияния на организм, повышают частоту генетических нарушений (мутаций) в облученных клетках. Такое ускорение мутационного темпа крайне нежелательно для животных, и особенно, для человека, т. к. большинство мутаций отрицательно влияет на их жизнеспособность.

Наблюдения над большим контингентом облученных в малых дозах в результате взрывов атомных бомб в Хиросиме и Нагасаки в 1945 г., взрыва водородной бомбы на Маршалловых островах в 1954 г. и др. показали, что облучение в малых дозах не проходит бесследно, а популяции в целом угрожает развитие определенных групп болезней.

У облученных в Японии уже через 3 года выявлен рост частоты лейкозов, который достиг максимума через 6-7 лет. Это касалось, главным образом, лиц, облученных в возрасте моложе 15 лет. У лиц, облученных в возрасте 30-40 лет и старше рост частоты лейкозов наблюдался через 15-25 лет, сохраняясь до 1960-71 гг. Выявлена закономерность: чем в более молодом возрасте облучается человек, тем короче латентный период до возможного развития лейкоза или другой опухоли. С повышением дозы облучения частота лейкозов нарастает. Спустя 20 лет обнаружился и рост частоты миеломной болезни, возрастала частота опухолей желудка, легких, молочной железы, щитовидной железы. Повышение частоты рака щитовидной железы отмечено через 12-23 года. Анализ крови и костного мозга японцев, получивших малые дозы от взрыва атомной бомбы, проведенный через 11 лет после него, показал некоторые количественные и функциональные отклонения от нормы, в частности, снижение числа лейкоцитов, снижение подвижности и фагоцитарной активности нейтрофилов, снижение активности пероксидазы нейтрофилов, числа тромбоцитов; в костном мозге - от тенденции к гипоплазии до тенденции к гиперплазии. Кариологический анализ лимфоцитов крови и миелоидных клеток в костном мозге, проведенный спустя 13-28 лет у облученных японских рыбаков переживших ядерный взрыв обнаружил стабильные абберации (транслокации, инверсии хромосом), обнаруживаемые в клетках костного мозга и крови, которые повышаются с годами.

После аварии на ЧАЭС в связи с радиоактивным загрязнением больших территорий в Белоруссии резко возросли заболевания щитовидной железы: её гиперплазия, узловой зоб, рак, тиреоидит. Причина: повреждение щитовидной железы в результате её облучения радиоактивным йодом-131, составляющим значительную часть радиоактивных выбросов и избирательно накапливающемся в щитовидной железе. Медико-биологическими исследованиями показано нарушение метаболических процессов и функций ряда важнейших систем организма (иммунной, эндокринной, сердечно-сосудистой и др.), ухудшение состояния здоровья населения, как эвакуированного, так и проживающего на загрязненных территориях, увеличение соматической заболеваемости, в т.ч. рост (особенно в последние годы) онкологических болезней, гемобластозов. Ухудшаются демографические показатели: снижается рождаемость и увеличивается смертность. Особое беспокойство вызывают отдельные последствия аварии в виде «генетического груза». У жителей республики значительно возрос уровень мутаций, хромосомных аббераций, увеличилось количество рождения детей с врожденными и наследственными пороками развития.

По оценкам Научного комитета по действию атомной радиации при ООН (НКДАР) от всех взрывов, осуществленных до 1981 г. критические органы человека получат к 2000 г. в среднем дозу порядка 350 мрад (3,5 м3в), что примерно в 2-3 раза больше годовой дозы естественного радиационного фона. Во многих местах земного шара это значение может быть в 5-10 раз выше (доклад НКДАР ООН, 1982).

Виды ионизирующих излучений и их влияние на живой организм. XXI век невозможно представить без современного и постоянно совершенствуемого ядерного оружия, разбросанных по всей территории земного шара крупных объектов атомной энергетики и многих сложных промышленных производств, использующих в технологическом процессе различные радиоактивные вещества. Все это предопределило появление, а затем и нарастание интенсивности такого негативного фактора среды обитания, как ионизирующие излучения, представляющие значительную угрозу для жизнедеятельности человека и требующие проведения надежных мер по обеспечению радиационной безопасности работающих и населения.
Ионизирующее излучение - это явление, связанное с радиоактивностью. Радиоактивность - самопроизвольное превращение ядер атомов одних элементов в другие, сопровождающееся испусканием ионизирующих излучений.
В зависимости от периода полураспада1 различают ко-роткоживущие изотопы, период полураспада которых исчисляется долями секунды, минуты, часами, сутками, и дол-гоживущие изотопы, период полураспада которых от нескольких месяцев до миллиардов лет.
При взаимодействии ионизирующих излучений с веществом происходит ионизация атомов среды. Обладая относительно большой массой и зарядом, а-частицы имеют незначительную ионизирующую способность: длина их пробега в воздухе составляет 2,5 см, в биологической ткани - 31 мкм, в алюминии - 16 мкм. Вместе с тем для ос-частиц характерна высокая удельная плотность ионизации биологической ткани. Для Р-частиц длина пробега в воздухе составляет 17,8 м, в воде - 2,6 см, а в алюминии - 9,8 мм. Удельная плотность ионизации, создаваемая Р-частицами, примерно в 1000 раз меньше, чем для ос-частиц той же энергии. Рентгеновское и у-излучения обладают высокой проникающей способностью, и длина пробега их в воздухе достигает сотен метров.
Степень, глубина и форма лучевых поражений, развивающихся среди биологических объектов при воздействии на них ионизирующего излучения, в первую очередь зависят от величины поглощенной энергии излучения. Для характеристики этого показателя используется понятие поглощенной дозы, т. е. энергии излучения, поглощенной в единице массы облучаемого вещества.
Для характеристики дозы по эффекту ионизации, вызываемому в воздухе, используется так называемая экспозиционная доза рентгеновского и у-излучений, выраженная суммарным электрическим зарядом ионов одного знака, образованных в единице объема воздуха в условиях электронного равновесия.
Поглощенная и экспозиционная дозы излучений, отнесенные к единице времени, носят название мощности поглощенной и экспозиционной доз.
Для оценки биологического действия ионизирующего излучения наряду с поглощенной дозой используют также понятие биологической эквивалентной дозы.
Ионизирующее излучение - уникальное явление окружающей среды, последствия от воздействия которого на организм на первый взгляд совершенно неэквивалентны величине поглощенной энергии. В настоящее время распространена гипотеза о возможности существования цепных реакций, усиливающих первичное действие ионизирующих излучений.
Процессы взаимодействия ионизирующих излучений с веществом клетки, в результате которых образуются ионизированные и возбужденные атомы и молекулы, являются первым этапом развития лучевого поражения. Ионизированные и возбужденные атомы и молекулы в течение 10-6 с взаимодействуют между собой, давая начало химически активным центрам (свободные радикалы, ионы, ионы-радикалы и др.).
Затем происходят реакции химически активных веществ с различными биологическими структурами, при которых отмечается как деструкция, так и образование новых, несвойственных для облучаемого организма соединений.
На следующих этапах развития лучевого поражения проявляются нарушения обмена веществ в биологических системах с изменением соответствующих функций.
Однако следует подчеркнуть, что конечный эффект облучения является результатом не только первичного облучения клеток, но и последующих процессов восстановления. Такое восстановление, как предполагается, связано с ферментативными реакциями и обусловлено энергетическим обменом. Считается, что в основе этого явления лежит деятельность систем, которые в обычных условиях регулируют естественный мутационный процесс.
Если принять в качестве критерия чувствительности к ионизирующему излучению морфологические изменения, то клетки и ткани организма человека по степени возрастания чувствительности можно расположить в следующем порядке:
нервная ткань;
хрящевая и костная ткань;
мышечная ткань;
соединительная ткань;
щитовидная железа;
пищеварительные железы;
легкие;
кожа;
слизистые оболочки;
половые железы;
лимфоидная ткань, костный мозг.
Эффект воздействия источников ионизирующих излучений на организм зависит от ряда причин, главными из которых принято считать уровень поглощенных доз, время облучения и мощность дозы, объем тканей и органов, вид излучения.
Уровень поглощенных доз - один из главных факторов, определяющих возможность реакции организма на лучевое воздействие. Однократное облучение собаки у-излучением в дозе 4-5 Гр1 (400-500 рад) вызывает у нее острую лучевую болезнь; однократное же облучение дозой 0,5 Гр (50 рад) приводит лишь к временному снижению числа лимфоцитов и нейтрофилов в крови.
Фактор времени в прогнозе возможных последствий облучения занимает важное место в связи с развивающимися после лучевого повреждения в тканях и органах процессами восстановления.
Заболевания, вызываемые действием ионизирующих излучений. Важнейшие биологические реакции организма человека на действие ионизирующей радиации условно разделены на две группы. К первой относятся острые поражения, ко второй - отдаленные последствия, которые, в свою очередь, подразделяются на соматические и генетические эффекты.
Острые поражения. В случае одномоментного тотального облучения человека значительной дозой или распределения ее на короткий срок эффект от облучения наблюдается уже в первые сутки, а степень поражения зависит от величины поглощенной дозы.
При облучении человека дозой менее 100 бэр, как правило, отмечаются лишь легкие реакции организма, проявляющиеся в изменении формулы крови, некоторых вегетативных функций.
При дозах облучения более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения. Первая степень лучевой болезни (легкая) возникает при дозах 100-200 бэр, вторая (средней тяжести) - при дозах 200-300 бэр, третья (тяжелая) - при дозах 300-500 бэр и четвертая (крайне тяжелая) - при дозах более 500 бэр.
Дозы однократного облучения 500-600 бэр при отсутствии медицинской помощи считаются абсолютно смертельными.
Другая форма острого лучевого поражения проявляется в виде лучевых ожогов. В зависимости от поглощенной дозы ионизирующей радиации имеют место реакции I степени (при дозе до 500 бэр), II (до 800 бэр), III (до 1200 бэр) и IV степени (при дозе выше 1200 бэр), проявляющиеся в разных формах: от выпадения волос, шелушения и легкой пигментации кожи (I степень ожога) до язвенно-некротических поражений и образования длительно незаживающих трофических язв (IV степень лучевого поражения).
При длительном повторяющемся внешнем или внутреннем облучении человека в малых, но превышающих допустимые величины дозах возможно развитие хронической лучевой болезни.
Отдаленные последствия. К отдаленным последствиям соматического характера относятся разнообразные биологические эффекты, среди которых наиболее существенными являются лейкемия, злокачественные новообразования, катаракта хрусталика глаз и сокращение продолжительности жизни.
Лейкемия - относительно редкое заболевание. Большинство радиобиологов считают, что вероятность возникновения лейкемии составляет 1-2 случая в год на 1 млн населения при облучении всей популяции дозой 1 бэр.
Злокачественные новообразования. Первые случаи развития злокачественных новообразований от воздействия ионизирующей радиации описаны еще в начале XX столетия. Это были случаи рака кожи кистей рук у работников рентгеновских кабинетов.
Сведения о возможности развития злокачественных новообразований у человека пока носят описательный характер, несмотря на то что в ряде экспериментальных исследований на животных были получены некоторые количественные характеристики. Поэтому точно указать минимальные дозы, которые обладают бластомогенным эффектом, не представляется возможным.
Развитие катаракты наблюдалось у лиц, переживших атомные бомбардировки в Хиросиме и Нагасаки; у физиков, работавших на циклотронах; у больных, глаза которых подвергались облучению с лечебной целью. Одномоментная ката-рактогенная доза ионизирующей радиации, по мнению большинства исследователей, составляет около 200 бэр. Скрытый период до появления первых признаков развития поражения обычно составляет от 2 до 7 лет.
Сокращение продолжительности жизни в результате воздействия ионизирующей радиации на организм обнаружено в экспериментах на животных (предполагают, что это явление обусловлено ускорением процессов старения и увеличением восприимчивости к инфекциям). Продолжительность жизни животных, облученных дозами, близкими к летальным, сокращается на 25~50% по сравнению с контрольной группой. При меньших дозах срок жизни животных уменьшается на 2-4% на каждые 100 бэр.
Достоверных данных о сокращении сроков жизни человека при длительном хроническом облучении малыми дозами до настоящего времени не получено.
По мнению большинства радиобиологов, сокращение продолжительности жизни человека при тотальном облучении находится в пределах 1-15 дней на 1 бэр.
Регламентация облучения и принципы радиационной безопасности. С 1 января 2000 г. облучения людей в РФ регламентируют Нормы радиационной безопасности (НРБ)-9б, Гигиенические нормативы (ГН) 2.6.1.054-96.
Основные дозовые пределы облучения и допустимые уровни устанавливают для следующих категорий облучаемых лиц:
персонал - лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
население, включая лиц из персонала, вне сферы и условий их производственной деятельности.
Для указанных категорий облучаемых предусматриваются три класса нормативов:
основные дозовые пределы (предельно допустимая доза - для категории А, предел дозы - для категории Б);
допустимые уровни (допустимая мощность дозы, допустимая плотность потока, допустимое содержание радионуклидов в критическом органе и др.);
контрольные уровни (дозы и уровни), устанавливаемые администрацией учреждения по согласованию с Госсанэпиднадзором на уровне ниже допустимого.
Основные дозовые пределы установлены для трех групп критических органов.
Критический орган - орган, ткань, часть тела или все тело, облучение которых причиняет наибольший ущерб здоровью данного лица или его потомству. В основу деления на группы критических органов положен закон радиочувствительности Бергонье-Трибондо, по которому самые чувствительные к ионизирующему излучению - это наименее дифференцированные ткани, характеризующиеся интенсивным размножением клеток.
К первой группе критических органов относятся гонады, красный костный мозг и все тело, если тело облучается равномерным излучением. Ко второй группе - все внутренние органы, эндокринные железы (за исключением гонад), нервная и мышечная ткань и другие органы, не относящиеся к первой и третьей группам.
К третьей группе - кожа, кости, предплечья и кисти, лодыжки и стопы.
В НРБ-96 в качестве основных дозовых пределов используется эффективная доза, определяемая произведением эквивалентной дозы в органе на соответствующий взвешенный коэффициент для данного органа или ткани. Эффективная доза используется в качестве меры риска отдаленных последствий облучения человека. Эффективная доза для персонала равна 20 мЗв в год за любые последующие 5 лет, но не более 50 мЗв в год; для населения - 1 мЗв в год за любые последующие 5 лет, но не более 5 мЗв в год.
Для второй и третьей групп критических органов эквивалентная доза в органе соответственно равна:
для персонала - 150 и 300 мЗв;
для лица из населения - 15 и 50 мЗв.
Для группы персонала Б эффективная и эквивалентные дозы в органе не должны превышать 1/4 значения для персонала (группа А).
Основные дозовые пределы облучения лиц из персонала и населения установлены без учета доз от природных и медицинских источников ионизирующего излучения, а также доз в результате радиационных аварий. Регламентация указанных видов облучения осуществляется специальными ограничениями и условиями.
Помимо дозовых пределов облучения НРБ-96 устанавливают допустимые уровни мощности дозы при внешнем облучении всего тела от техногенных источников, а также допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной защиты.
Соблюдение установленных норм облучения и обеспечение радиационной безопасности персонала предопределяются комплексом многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, и в первую очередь от типа (закрытого или открытого) источника излучения.
Защитные мероприятия, позволяющие обеспечить радиационную безопасность при применении закрытых источников, основаны на знании законов распространения ионизирующих излучений и характера их взаимодействия с веществом.
Главные из них следующие:
доза внешнего облучения пропорциональна интенсивности излучения и времени воздействия;
интенсивность излучений от точечного источника пропорциональна количеству квантов или частиц, возникающих в нем за единицу времени, и обратно пропорциональна квадрату расстояния;
интенсивность излучения может быть уменьшена с помощью экранов.
Из этих закономерностей вытекают основные принципы обеспечения радиационной безопасности:
уменьшение мощности источников до минимальных величин ("защита количеством");
сокращение времени работы с источниками ("защита временем");
увеличение расстояния от источников до работающих ("защита расстоянием");
экранирование источников излучения материалами, поглощающими ионизирующие излучения ("защита экранами").
Гигиенические требования по защите персонала от внутреннего переобучения при использовании открытых источников ионизирующего излучения определяются сложностью выполняемых операций при проведении работ. Вместе с тем главные принципы защиты остаются неизменными. К ним относятся:
использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде;
герметизация производственного оборудования для изоляции процессов, которые могут быть источниками поступления радиоактивных веществ во внешнюю среду;
мероприятия планировочного характера;
применение санитарно-технических устройств и оборудования, использование защитных материалов;
использование средств индивидуальной защиты и санитарная обработка персонала;
выполнение правил личной гигиены.

По материалам книги - "Безопасность жизнедеятельности" Под редакцией проф. Э. А. Арустамова.

Вам также будет интересно:

Взаимодействие тел — Гипермаркет знаний
Взаимодействие тел «Ключом ко всякой науке является вопросительный знак» Оноре де...
Что означают Советские имена: толкование и история происхождения Имена после революции 1917
Имена советского происхождения - личные имена, бытующие в языках народов бывшего СССР,...
Психология и педагогика Вид стресса связанный с реальными коммуникативными проблемами
Профессиональный стресс - это напряженное состояние работника, возникающее у него при...
Восстания Жакерия: причины, события и последствия
ервоначальный успех в войне был на стороне Англии, одержавшей крупные победы над...
Механическое движение: равномерное и неравномерное
Раздел 1 МЕХАНИКА Глава 1: О с н о в ы к и н е м а т и к и Механическое движение....