Пау образуется в процессе сгорания. Общие сведения о полициклических ароматических углеводородах (ПАУ)

Полициклическими ароматическими углеводородами (ПАУ) называют большую группу органических соединений, содержащих два или более бензольных кольца (рис. 2.3). Они вызывают повышенный интерес экологов в связи с их высокой биологической (канцерогенной и мутагенной) активностью . Образование и поступление ПАУ в окружающую среду связано с микробиологическими и высокотемпературными процессами, протекающими в природе (лесные пожары, вулканическая деятельность), и антропогенными факторами (работа промышленности, сжигание топлива, транспортные выхлопы и т.п.) . Наряду с незамещенными полициклическими ароматическими углеводородами в окружающую среду поступают и их гетероциклические аналоги, иногда более

Рис. 2.3.

I - нафталин; 2 - аценафтилен; 3 - аценафтен; 4 - флуорен; 5 - фенантрен; 6 - антрацен; 7 - флуорантен; 8 - пирен; 9 - бенз(а)антрацен; 10 - хризен;

II - бенз(Ь)флуорантен; 12 - бенз(к)флуорантен; 13 - бенз(а)пирен; 14 - дибенз- (аф)антрацен; 15 - бенз^,1у)перилен; 16 - индено(1,2,3-с

токсичные, чем исходные соединения. Их присутствие в смеси с ПАУ может вызвать синергетический эффект.

Помимо незамещенных ПАУ, существует большое число полициклических соединений, содержащих различные функциональные группы в кольцах или в боковых цепях (нитро-, амино-, суль- фопроизводные, спирты, альдегиды, эфиры, кетоны и др.). Боль-

Углеводород

Температура, °С

Растворимость, мкг/л

плавления

в пресной воде

в соленой воде

Нафталин

Аценафтилен

Аценафтен

Фенантрен

Антрацен

Флуорантен

Бенз(а)пирен

Бенз(§,Ьд)перилен

Дибенз(а,Ь)антрацен

шинство ПАУ - кристаллические вещества (за исключением некоторых производных нафталина) с высокими температурами плавления (табл. 2.6). Из таблицы видно, что в воде ПАУ растворяются плохо. Растворимость ПАУ в органических растворителях возрастает и зависит от молекулярной массы. Как правило, с увеличением числа ароматических колец и алкильных радикалов растворимость ПАУ в воде уменьшается.

ПАУ интенсивно поглощают УФ-излучение (320 - 420 нм) и быстро окисляются под действием света в атмосфере с образованием хинонов и карбонильных соединений. Так, при 20-минутном облучении в УФ-диапазоне разлагается до 85 % антрацена, 70 % тетрафена, 52 % бенз(а)пирена, 51 % хризена, 34 % пирена . В городском воздухе ПАУ в основном адсорбированы на частицах сажи или пыли. Такие частицы могут существовать в атмосфере в виде аэрозолей или взвесей несколько недель и переноситься с воздушными потоками на значительные расстояния.

В присутствии оксидов азота ПАУ образуют нитропроизводные, многие из которых являются канцерогенами. Скорость образования нитросоединений зависит от концентрации NO* в атмосфере и температуры. Кроме того, большинство полициклических ароматических углеводородов участвуют в реакциях с сильными окислителями с образованием различных продуктов.

Установлен следующий ряд относительной стабильности ПАУ в городской атмосфере :

  • лето: бенз(а)пирен
  • зима: бенз(а)пирен

В отличие от превращений ПАУ в атмосфере из воды они удаляются в основном за счет биологической деградации. Так, микрофлора сточных вод способна разрушать до 40 % ПАУ, причем деструкция под действием микроорганизмов протекает не только в воде, но и в донных отложениях. Заметим, что многие ПАУ не являются канцерогенами, но под действием ультрафиолетового излучения переходят в воде в соединения, токсичные для водных организмов.

Микроорганизмы способны разрушать ПАУ и в почве. Наиболее эффективно такое разложение протекает в кислых пористых почвах. Так, в почве с pH 4,5 в первые 10 суток разлагается от 95 до 99 % бенз(а)пирена, тогда как при pH 7,2 - только от 18 до 80 % . В процессах самоочищения почв от ПАУ существенную роль играют и другие факторы, например метаболизм в растениях, ферментативная активность микроорганизмов, температура, влажность. В южных районах этот процесс протекает быстрее, чем в северных.

Одним из основных показателей токсичности полициклических ароматических углеводородов является их канцерогенность. Из обычного набора ароматических углеводородов, содержащихся в воздухе и других средах, наибольшую канцерогенную активность имеют бенз(а)пирен и дибенз(а,11)антрацен. Несмотря на то, что МАИР относит бенз(а)пирен к группе 2А, т.е. к веществам, канцерогенность которых для человека имеет ограниченные доказательства, концентрации бенз(а)пирена в воздухе на уровне 3-6 нг/м 3 при длительном воздействии могут привести к увеличению частоты рака легкого у населения. Канцерогенными являются многие нитропроизводные ПАУ. Например, 1-нитропирен проявляет мутагенные и канцерогенные свойства. Он поступает в окружающую среду при сжигании каменного угля в топках ТЭЦ, а также с выхлопами дизельных двигателей. Мутагенные нитропроизводные ПАУ обнаруживают в пробах сточных вод на бензозаправочных станциях, в отработанных автомобильных маслах. В последних содержание 1-нитропирена может достигать более 100 нг/л. В табл. 2.7 приведены коэффициенты токсичности ПАУ относительно бензапирена.

Токсичность отдельных представителей ПАУ зависит как от индивидуальных особенностей живых организмов, так и от экологической обстановки в целом. Она определяется также физико-

географическими, климатическими и погодными условиями. При этом для ПАУ кумулятивный эффект более выражен по сравнению с кратковременным воздействием высоких доз токсикантов. На основании исследований гигиенистов в России установлены следующие значения ПДК для бенз(а)пирена: 1 нг/м 3 (среднесуточная) - для воздуха населенных мест; 5 нг/л - для поверхностных вод; 20 мкг/кг - для сухой почвы .

Однако обоснованность применения бенз(а)пирена в качестве индикатора загрязнения окружающей среды полициклическими ароматическими углеводородами весьма проблематична. Его обнаружение свидетельствует лишь о факте загрязнения природной среды этими соединениями. Для получения реальной картины необходимо знать концентрацию 16 приоритетных веществ, которые формируют фоновое содержание ПАУ в атмосферном воздухе (см. рис. 2.3) .

В группу приоритетных ПАУ для поверхностных вод входят шесть представителей из этого списка: бенз(а)пирен и бенз(Ь)- флуорантен (сильные канцерогены), 6eH3(g,h,i)nepimeH и индено- (1,2,3-сс1)пирен (слабые канцерогены), а также неканцерогенные, но токсичные флуорантен и бенз(к)флуорантен. Присутствие ПАУ в поверхностных водах свидетельствует об угрозе здоровью населения. Согласно рекомендациям ВОЗ, общая концентрация приоритетных полициклических ароматических углеводородов в питьевой воде не должна превышать 0,2 мкг/л.

Индикаторами промышленных выбросов являются пирен, флуорантен, 6eH3(g,h,i)nepRJieH, бенз(Ь)флуорантен и индено(1,2,3- сфпирен; индикаторами выбросов двигателей внутреннего сгорания - 6eH3(g,h,i)nepRJieH, бенз(Ь)флуорантен и индено(1,2,3-сс1)- пирен (первый обычно преобладает).

По имеющимся данным глобальная эмиссия бензапирена в природную среду в конце 80-х годов XX века составляла около 5000 тонн в год, причем 61 % приходился на сжигание угля, 20 % - на производство кокса, 4 % - на сжигание древесины, 8 % - на лесные пожары, 1 % - на выбросы транспорта и лишь 0,09 % и 0,06 % - на сжигание нефти и газа соответственно. При этом фоновое загрязнение воздуха в Западной Европе составляло 0,05 - 0,15 нг/м 3 , в Восточной Европе - 0,04 - 5,0 нг/м 3 (в среднем 0,5 нг/м 3), в Арктике и Антарктике - КГ 4 - 1(Г 3 нг/м 3 .

Эмиссия бенз(а)пирена с территории СССР составляла 985 т/год, тогда как для США эта величина была равна 1280 т/год. В последнее время наблюдается уменьшение поступления ПАУ в окружающую среду. Это связано как с уменьшением объемов промышленного производства в 90-е годы, так и с совершенствованием технологий сжигания органического топлива и очистки дымовых газов, а также с повышением требований к качеству выхлопных газов двигателей внутреннего сгорания автомобилей. В частности, выброс бенз(а)пирена от промышленных источников в России уменьшился с 90 тонн в 1992 г. до 23 тонн в 1995 г. Заметное уменьшение объема выбросов объясняется не только сокращением производства, но и несовершенством системы мониторинга выбросов ПАУ, поскольку по многим областям отсутствуют официальные статистические данные о выбросах бенз(а)пирена. Более точные сведения можно получить при использовании данных о выбросах бенз(а)пирена на единицу сжигаемого топлива.

На фоне других загрязняющих веществ в воздухе крупных городов ПАУ присутствуют в незначительных количествах. Однако они вносят заметный вклад в загрязнение атмосферы промышленных центров наиболее опасными для здоровья человека веществами. В воздухе крупных городов концентрация бенз(а)пирена составляет от 0,1 до 100 нг/м 3 . В частности, во многих городах США среднее содержание бенз(а)пирена в атмосферном воздухе на наиболее оживленных автомагистралях достигает 6 нг/м 3 . В атмосферном воздухе большинства промышленных центров России бенз(а)- пирен содержится на уровне 2-3 нг/м 3 . Так, в пробах воздуха, отобранных во Владимире, концентрация бенз(а)пирена почти в три раза превышала ПДК для воздуха населенных мест - 2,9 нг/м 3 .

Высокий уровень загрязнения атмосферного воздуха (6-15 нг/м 3) отмечен в городах, где размещены заводы по производству алюминия и металлургические комбинаты (Новокузнецк, Братск, Магнитогорск, Нижний Тагил, Красноярск, Челябинск, Липецк), а также в районах размещения крупнейших тепловых электростанций (Губаха, Канск, Назарово, Новочеркасск, Черемхово). В целом по России примерно в 25 городах среднегодовая концентрация бенз(а)пирена в атмосферном воздухе превышает 3 нг/м 3 . В частности, в Магнитогорске среднегодовые концентрации бенз(а)пирена

ТАБЛИЦА 2.8. Средние данные многолетних измерений концентраций бенз(а)пирена в атмосферных осадках, поверхностных водах и донных отложениях

Район наблюдения

Атмосферные осадки, нг/л

Поверхностные воды, нг/л

отложения,

Астраханский заповедник

Березинский заповедник

Кавказский заповедник

Приокско-Т еррасный заповедник

Центрально-Лесной

заповедник

Баргузинский заповедник

Сихотэ-Алиньский

заповедник

Чаткальский заповедник

Болгария (Рожен, Ропотамо)

Венгрия (Сарваш)

Германия (Нойглобзов)

превышают ПДК в 9,4-12,1 раза. При этом показатели заболеваемости раком легкого у мужчин в наиболее загрязненных районах города в 1,5 раза выше по сравнению с менее загрязненными районами . Хотя в последние годы содержание бенз(а)пирена в атмосферном воздухе несколько снизилось, учитывая эффект отдаленного воздействия канцерогенных веществ, можно ожидать, что на протяжении 15-20 лет в городах с повышенным уровнем загрязнения воздуха будет регистрироваться более высокая частота рака легкого.

В осадках наиболее высокие концентрации бенз(а)пирена обнаружены вблизи крупных промышленных центров, что связано с общим содержанием ПАУ в воздухе районов, где выпали осадки. В табл. 2.8 приведены средние данные многолетних измерений концентраций бенз(а)пирена в дождевой воде на фоновых станциях.

В поверхностных водоемах концентрация ПАУ часто имеет довольно большие значения. Так, в ряде водоемов США содержание бенз(а)пирена доходило до 80 нг/л, а в озерах Германии - до 25 нг/л . Установлено, что если концентрация шести приоритетных ПАУ в воде не выше 40 нг/л, то данный водоем мало загрязнен.

Фоновая концентрация бенз(а)пирена в поверхностных водах России не превышает 10-11 нг/л. Самые низкие значения характерны для азиатской части и горных районов. В частности, в реках и озерах Камчатки и Курильских островов содержание бенз(а)пирена не превышает 0,1-1 нг/л. Расчеты показывают, что на 1 м 2 земной поверхности в европейской части России в течение года осаждается 110-170 мкг бенз(а)пирена.

Согласно представленным в табл. 2.8 данным, в донных отложениях фоновых районов средние концентрации бенз(а)пирена находятся на уровне 1-5 нг/г. Содержание ПАУ в верхних слоях отложений пресноводных водоемов сильно зависит от близости водоемов к индустриальным центрам. Так, в донном иле Великих озер США концентрация бенз(а)пирена изменяется от 10 до 1000 нг/г, в озерных отложениях стран Европы - от 100 до 700 нг/г (Швейцария) и от 200 до 300 нг/г (Германия), причем 2/3 его адсорбировано на взвешенных частицах, которые играют основную роль в процессах переноса бенз(а)пирена в водных системах .

Аналогично донным отложениям, почва также является местом накопления ПАУ в результате глобального переноса и поступления из антропогенных источников. Фоновые концентрации ПАУ в почвах зависят от их типа и характера использования. Обычно содержание бенз(а)пирена в поверхностном слое почв сельских районов России, находящихся вдали от индустриальных центров, не превышает 5-8 нг/г . Считается, что почва умеренно загрязнена ПАУ при содержании 20-30 нг/г, значительно - при 31- 100 нг/г и сильно - свыше 100 нг/г. При этом максимальное содержание ПАУ наблюдается в поверхностных слоях почв и связано с тем, что гумусовые горизонты, содержащие наибольшее количество органических веществ, имеют более высокую сорбционную способность, благодаря чему ПАУ накапливаются в почвах.

Фоновые концентрации полициклических ароматических углеводородов в растениях зависят в основном от их способности сорбироваться листьями при осаждении из воздуха и накапливаться в них. Повышенные концентрации бенз(а)пирена наблюдаются в мхах и лишайниках (до 50 нг/г и более). В траве содержание бенз(а)пирена довольно низкое (менее 1 нг/г), хотя в отдельных видах растений оно может достигать 20-30 нг/г. При этом через корни растений проникает меньшая часть ПАУ. Так, в капусте содержание бенз(а)пирена заметно выше, чем в помидорах - соответственно 15,6 и 0,22 мкг/кг. В зернах пшеницы бенз(а)пирен обнаружен на уровне 0,68-1,44 мкг/кг, в сушеных фруктах и черносливе - 16-23,9 мкг/кг .

ПАУ содержатся также в мясных и молочных продуктах. В колбасе твердого копчения содержание бенз(а)пирена составляет 0,2-3,7 мкг/кг, в вареной колбасе - 0,4-0,6 мкг/кг, в окороке и корейке - 16,5-29,5 мкг/кг, в сельди холодного копчения - 6,8-11,2 мкг/кг, в молоке и масле - 3,2-9,4 мкг/кг . Средняя концентрация бенз(а)пирена в морской рыбе находится в диапазоне 0,1- 0,2 мкг/кг. Исключение составляют угорь (1,1 мкг/кг) и лосось (5,9 мкг/кг). В речной рыбе содержание ПАУ зависит от загрязнения водоема. Заметим, что коэффициент биоконцентрирования ПАУ в рыбе меньше, чем в водных растениях и донных отложениях. В среднем за год с продуктами питания в организм жителя России поступает 1-2 мг бенз(а)пирена. При этом доза поступления бенз(а)пирена в организм человека за 70 лет жизни с продуктами растительного происхождения составляет только 3^1 мг.

Экологическое и токсикологическое воздействие полициклических ароматических углеводородов (ПАУ) на окружающую среду

Нгандже Tересе Нтонзи,

кандидат наук по геохимии окружающей среды, преподаватель кафедры геологии университета Калабар штата Кросс-Ривер в г. Калабар Федеративной Республики Нигерия,

Абара Энагу Aбара,

кандидат химических наук, проректор Технологического университета штата Кросс-Ривер в г. Калабар Федеративной Республики Нигерия,

Ибе Kеннет A,

кандидат наук по химии окружающей среды, преподаватель факультета теоретической и промышленной химии Государственного университета нефтяных ресурсов в г. Эффурун штата Дельта Федеративной Республики Нигерия,

Неджи Питер Амба,

аспирант кафедры технологии нефти и экологии Кубанского государственного технологического университета.

Присутствие ПАУ в окружающей среде является источником обеспокоенности специалистов в области органической химии, биохимиков, химиков по проблемам окружающей среды и геохимиков. Поскольку большинство ПАУ с низкой молекулярной массой являются токсичными для бактерий, то они замедляют биологическое разложение, в то время как другие являются канцерогенными. Кроме того, для геохимиков понимание присутствия ПАУ в геологических образцах приводит к установлению типа отложений окружающей среды, делая ПАУ потенциально полезными в качестве биомаркеров.

vyvod-iz-zapoya-moskva.com

Полициклические ароматические углеводороды (ПАУ) – это химические соединения, состоящие из двух и более сцепленных бензольных колец.

Имеются тысячи ПАУ соединений, каждое из которых отличается по количеству и расположению ароматических колец, а также позицией заместителей.

ПАУ встречаются в нефти, каменном угле, отложениях смолы, а также выступают в роли побочных продуктов при сгорании топлива (вне зависимости ископаемое ли это топливо или полученное из биомассы). Как загрязняющий агент они являются предметом большой обеспокоенности потому, что некоторые соединения были идентифицированы как канцерогенные, мутагенные и тератогенные.

Экологические и токсикологические аспекты полициклических ароматических углеводородов в окружающей среде в отношении природных ресурсов.

Озабоченность в отношении окружающей среды сфокусировалась на ПАУ, которые имеют молекулярную массу от 128,16 (нафталин, 2-кольцевая структура) до 300,36 (гексабензобензол, 7 – кольцевая структура). Незамещенные ПАУ соединения с низкой молекулярной массой, содержащие от 2-3 колец, показывают значительную токсичность, а другие – неблагоприятный эффект на некоторые организмы, но не являются канцерогенными; ПАУ с более высокой молекулярной массой, содержащие от 4 до 7 колец, значительно менее токсичны, но многие 4, 7-кольцевые соединения являются канцерогенными, мутагенными или тератогенными в отношении широкого ряда организмов, включая рыбу и другие водные организмы, амфибий, птиц и млекопитающих. (Эдвардс, 1983. Исмен, 1984. см. рисунки 1 и 2)

Источники ПАУ

ПАУ повсеместно встречаются в природе. Так доказано их присутствие в геологических отложениях, почве, воздухе, на поверхности образцов воды, в растительных и животных тканях. Первоначально ПАУ появились в результате таких природных процессов как лесные пожары, микробиальный синтез и вулканическая активность. (Согласно Баттерсби, С. 2004). Их также находят в межзвездном пространстве, в кометах, метеоритах и они также являются молекулярными маркерами в основе самых ранних форм жизни.

Человеческая деятельность, приводящая к значительному выделению ПАУ, что в свою очередь ведет к сильному загрязнению на ограниченных территориях, включает высокотемпературный пиролиз (>700 0 С) органических материалов, типичный для некоторых процессов, используемых при производстве железа и стали, в алюминиевых плавильных печах, на металлургических и коксовых заводах, при очистке нефти, при генерации энергии с помощью нагрева.

Водная среда может получать ПАУ при случайных разливах нефти и нефтепродуктов из средств ее хранения и транспортировки, из канализационных стоков и из других источников.

Доказательства, показывающие, что ПАУ являются причиной раковых и предраковых поражений, весьма очевидны и этот класс веществ, вероятно, является главной причиной недавнего увеличения уровня заболеваемости раком в индустриально развитых странах (Кук и Деннис 1984).

ПАУ были первыми известными веществами, канцерогенный эффект которых был установлен (Ли и Грант 1981).

В силу наличия канцерогенных характеристик у многих ПАУ и их возрастающей концентрации в окружающей среде, до получения более определенных экотоксикологических данных является целесообразным понизить концентрацию либо полностью нейтрализовать их везде, где это возможно (Эйслер, Р. 1987).

Рис. 1. Вещества, обладающие значительным уровнем токсичности, но не канцерогенные.

Рис. 2. Вещества с выраженным канцерогенным эффектом.

Воздействие ПАУ на окружающую среду

Полициклические ароматические углеводороды, будучи выброшенными в окружающую среду, обычно попадают в воздух. Некоторые испаряются в воздух из почвы или подземных вод и затем прилипают к микрочастицам, взвешенным в воздухе.

Полициклические ароматические углеводороды (ПАУ) могут по прошествии времени разрушаться под воздействием солнечного света или в результате реакции с другими химическими веществами в воздухе.

ПАУ малорастворимы в воде, они прилипают к пыли или грязи и опускаются на дно озер и рек. Различные группы микроорганизмов в осадке и в воде могут разрушать некоторые ПАУ по прошествии времени, причем, чем выше молекулярный вес, тем меньше скорость распада .

Полициклические ароматические углеводороды перемещаются в атмосфере в виде взвешенных в воздухе микрочастиц. Они переносятся воздушными потоками и оседают в виде сухих или мокрых (дождь, роса и т.п.) отложений. Оседая в озерах и реках, они опускаются на дно. Некоторые проникают сквозь слой почвы в грунтовые воды.

Токсичность полициклических ароматических углеводородов в отношении аквакультур и птиц колеблется от умеренной до высокой. Некоторые наносят ущерб и приводят к гибели сельскохозяйственные и декоративные злаки.

На данный момент имеет место недостаток данных в отношении острой и хронической токсичности в отношении наземных животных. ПАУ умеренно стойки в окружающей среде и могут биоаккумулироваться. Концентрация полициклических ароматических углеводородов в рыбе и моллюсках иногда значительно выше, чем в окружающей среде этих организмов.

ПАУ могут быть также прямо генотоксичны, при этом имеется в виду что химикаты и продукты их распада могут непосредственно взаимодействовать с генами и вызывать повреждения ДНК. При исследовании загрязнителей окружающей среды в домашней пыли, проводившимся Сайлент Спринг Инститьют, было установлено, что три ПАУ (пирен, бенз[а]антрацен и бенз[а]пирен) содержались в более чем трех четвертях обследованных домов.

Опасность, которую представляют ПАУ для окружающей среды

На шкале опасности в отношении окружающей среды от 0 до 3, представленной выше на рисунке 3, полициклические ароматические углеводороды имеют отметку 1,5. Уровень 3 представляет очень высокую опасность для окружающей среды, а уровень 0 представляет незначительную опасность. Факторы, принимаемые в расчет, включают в себя оценку степени токсичности или нетоксичности вещества, измерение его способности сохранять активность в окружающей среде и способности аккумулироваться в живых организмах. Выделение вещества в расчет не принимается. Оно отражается в уровне НПИ для данного вещества. Одно из веществ, опасность которого для окружающей среды оценивается как высокая это оксид азота (3) и одно из веществ, опасность которого оценивается как низкая это оксид углерода (0,8).

Токсичность ПАУ для человека

Токсичность ПАУ очень зависит от структуры, даже изомеры могут быть как нетоксичными, так и исключительно токсичными. Таким образом, высоко канцерогенные ПАУ могут быть малыми (менее 3 колец) или большими (более 4 колец). Один ПАУ, бензо[а]пирен, является первым исследованным канцерогеном и является одним из многих канцерогенов, содержащихся в сигаретах. Семь ПАУ были классифицированы как вероятные человеческие канцерогены: бенз[а]антрацен, бензо[а]пирен, бензо[ b ]флюорантен, бензо[к]флюорантен, крисен, дибенз[а, h ]антрацен и инденопирен.

ПАУ, известные своими канцерогенными, мутагенными и тератогенными свойствами: бенз[а]антрацен и крисен, бензо[ b ]флюорантен, бензо[ j ]флюорантен, бензо[к]флюорантен, бензо[а]пирен, бензо[ ghi ]пирилен, коронен, дибенз[ a , h ]антрацен, инденопирен и овален (Фетцер, Д. К.(2000), Лач, А (2005)).

В силу недостатка репрезентативных смесей ПАУ для целей исследования, воздействие биологических и небиологических модификаторов на токсичность ПАУ и метаболизм еще недостаточно понятен.

Были предложены следующие критерии безопасности общего содержания ПАУ, канцерогенных ПАУ и бензо(а)пирена для питьевой воды и воздуха и общего содержания ПАУ и бензо(а)пирена в пище: 0,01 до <0,2 мкг общих ПАУ/л, <0,002 мкг канцерогенных ПАУ/л и 0,0006 мкг бензо(а)пирена /л; воздух: < 0,01 мкг общих ПАУ/м 3 , <0,002 мкг канцерогенных ПАУ/м 3 и 0,0005 мкг бензо(а)пирена/м 3 ; пища: 1,6 до < 16,0 мкг общих ПАУ ежедневно и 0,16 до < 1,6 мкг бензо(а)пирена ежедневно.

Направления использования

Многие ПАУ не используются в принципе. Но некоторые используются в медицине, для производства красок, пластиков и пестицидов. Нафталин, также известный как шарики от моли, используется при производстве красителей, взрывчатых веществ, пластиков, смазок и средств от моли. Антрацен используется в красках, инсектицидах и средствах для защитной обработки древесины.

Заключение

Из приведенного обзора очевидно, что, несмотря на некоторую полезность ПАУ, их экологическая и токсикологическая опасность является предметом острой озабоченности и концентрация их должна быть сильно снижена в окружающей среде, а в лучшем случае они должны быть из нее полностью ликвидированы.

Литература

1. Баттерсби С (2004). Органическое происхождение космических молекул. Январь 2004, http:// www. newscientist. com/ news/ news. jsp? id= ns99994552 .

2. Кук М и А. Д. Деннис. 1981. Химический анализ и биологическая роль: полиядерные ароматические углеводороды. Пятый международный симпозиум. Баттель Пресс, Колумбус, Огайо. 770 с.

3. Едвардс Н.Т. 1983. Полициклические ароматические углеводороды (ПАУ) в наземной окружающей среде – обзор. Журнал «Качество окружающей среды» 12.427-441.

4. Исман Г. А., Давани Б., и Додсон Д. А. 1984. Гидростатическое тестирование газовых трубопроводов как источник попадания ПАУ в водную среду. Международный журнал химического анализа окружающей среды. 19:27-39.

5. Ислер Р (1987) Влияние полициклических ароматических углеводородов на рыбу, живую среду и беспозвоночных: Синоптический обзор.

6. Служба рыбы и дикой природы США, Центр исследования живой природы Патуксент. Лаурель. ЕПА. 1980. Качество воды с точки зрения содержания полициклических ароматических углеводородов. Агенство по защите окружающей среды США. 440/5-80-069.193.

7. Фетцер Д. К. (2000) Химия и анализ тяжелых полициклических ароматических углеводородов. Нью-Йорк. Виллей.

8. Ли С. Д., Грант Л. 1981. Здоровье и экологическая оценка полициклических ароматических углеводородов. Издательство Патотекс. Парк Форест Соуз, Иллинойс. 364 с.

9. Лач А. (2005). Канцерогенный эффект полициклических ароматических углеводородов. Лондон: Империал Колледж Пресс, ISBN 1-86094-417-5.

Насчитывается более 200 представителей полициклических ароматических углеводородов (ПАУ), являющихся сильными канцерогенами.

Один из главных показателей токсичности ПАУ – их канцерогенность.

Канцерогенная активность реальных сочетаний ПАУ на 70–80% обусловлена бенз(а)пиреном. Поэтому по присутствию бенз(а)пирена в пищевых продуктах и других объектах можно судить об уровне их загрязнения ПАУ и степени онкогенной опасности для человека.

Обнаружение бенз(а)пиренасвидельствует о факте загрязнения окружающей среды этими соединениями

Общая концентрация ПАУ в питьевой воде не должна превышать 0,2 мкг/л.

ПАУ могут переходить из почвы в растения, корма для животных и затем в пищу человека. Фоновые концентрации бенз(а)пирена в растениях зависят от их способности накапливать ПАУ.

Растения усваивают бенз(а)пирен как через корневые системы, так и непосредственно из воздуха – загрязнение листьев и плодов.

Полимерные упаковочные материалы могут играть немаловажную роль в загрязнении пищевых продуктов ПАУ, например, жир молока экстрагирует до 95% бенз(а)пирена из парафинобумажных пакетов или стаканчиков.

С пищей взрослый человек получает бенз(а)пиренаа 0,006 мг/год; в России, только с продуктами питания – 1–2 мг. В интенсивно загрязненных районах эта доза возрастает в 5 и более раз. По другим сведениям, доза поступления бенз(а)пирена в организм человека за 70 лет только с продуктами растительного происхождения с учетом их кулинарной обработки составляет 3–4 мг.

Бенз(а)пирен попадает в организм человека с такими пищевыми продуктами, в которых до настоящего времени существование канцерогенных веществ не предполагалось. Он обнаружен в хлебе, овощах, фруктах, маргарине, в обжаренных зернах кофе, копченостях, жаренных мясных продуктах. Причем его содержание значительно колеблется в зависимости от способа технологической и кулинарной обработки или от степени загрязнения окружающей среды.



О предельных концентрациях, оказывающих на человека канцерогенное действие, нет точных данных, так как локальное действие этих веществ проявляется только при непосредственном контакте. Опыты с животными показали, что при нанесении вещества кисточкой на отдельные участки тела активность проявляют уже количества порядка 10– 100 мкг.

При попадании в организм ПАУ возникают мутации, несомненно, способствующие развитию раковых заболеваний.

Наименование продукта Наименование продукта Содержание бенз(а)пирена, мкг/кг
Свинина свежая Не обнаружено Сахар 0,23
Говядина свежая Не обнаружено Мука 0,2–1,6
Телятина свежая Не обнаружено Ржаной хлеб 0,08–1,63
Колбаса вареная 0,26–0,50 Помидоры 0,22
Колбаса копченая 0–2,1 Цветная капуста
Жареная телятина 0,18–0,63 Картофель 1–16,6
Камбала свежая (сухая масса) Кофе умеренно пожареный 0,3–0,5
Красная рыба 0,7–1,7 Кофе пережареный 5,6–6,1
Сельдь холодного копчения до11,2 Сушеные фрукты:
Молоко 0,01–0,02 сливы 23,9
Сливочное масло 0–0,13 яблоки 0,3
Подсолнечное масло 0,93–30,0 груша 5,7

Радионуклиды

Основной причиной поступления радионуклеидов в окружающую среду, продовольственное сырье и пищевые продукты является их радиоактивное загрязнение.

Контаминанты-загрязнители, применяемые в растениеводстве

Остатки ядохимикатов , используемых в сельском хозяйстве, представляют наиболее значительную группу загрязнителей, т.к. присутствуют почти во всех пищевых продуктах растительного происхождения. В эту группу загрязнителей входят пестициды (бактерициды, фунгициды, инсектициды, гербициды и др.), удобрения, регуляторы роста растений, средства против прорастания, средства, ускоряющие созревание плодов.

Нитраты

Основными источниками поступления нитратов в сырье и продукты питания являются нитратные пищевые добавки, вводимые в мясные изделия для улучшения их органолептических показателей и подавления размножения некоторых патогенных микроорганизмов.

Для увеличения урожайности растительной продукции в почву вносят повышенное количество азотосодержащих удобрений. Это приводит к увеличению содержания нитратов в растительном сырье и продуктах. Овощи и фрукты (черная редька, столовая свекла, листовой салат, щавель, редиска, ревень, сельдерей, шпинат, листья петрушки, укроп) наиболее интенсивно накапливают нитраты.Гемоглобонемия–заболевание, вызванное избыточным поступлением нитратов в организм человека.

Чужеродные химические вещества (чхв)

Одним из возможных путейпоступления ЧХВ из окружающей среды в продукты питания является включение их в «пищевую цепь».

«Пищевые цепи» представляют собой одну из основных форм взаимосвязи между отдельными организмами, каждый из которых служит пищей для других видов . В этом случае происходит непрерывный ряд превращений веществ в последовательных звеньях «жертва-хищник».

Наиболее простыми могут считаться цепи , при которых загрязнители поступают из почвы в растительные продукты (грибы, зелень, овощи, фрукты, зерновые культуры) в результате полива растений, обработке пестицидами и пр., накапливаются в них, а затем с пищей поступают в организм человека.

Более сложными являются «цепи», при которых имеется несколько звеньев. Например, трава -травоядные животные - человек или зерно - птицы и животные - человек. Наиболее сложные «пищевые цепи», как правило, связаны с водной средой.

Растворенные в воде вещества извлекаются фитоплактоном, последний затем поглощается зоопланктоном (простейшими, рачками), далее поглощается «мирными» и затем хищными рыбами, поступая с ними в организм человека. Но цепь может быть продолжена за счет поедания рыбы птицами и всеядными животными и лишь потом вредные вещества поступают в организм человека.

Особенностью «пищевых цепей» является то, что в каждом последующем ее звене происходит кумуляция (накопление) загрязнителей в значительно большем количестве, чем в предыдущем звене.

Так, в грибах концентрация радиоактивных веществ может быть в 1 000-10 000 раз выше, чем в почве. Таким образом, в пищевых продуктах, поступающей в организм человека, могут содержаться очень большие концентрации ЧХВ.

В целях охраны здоровья человека от вредного влияния чужеродных веществ, попадающих в организм с пищей, устанавливаются определенные пределы, гарантирующие безопасность использования продуктов, в которых присутствуют посторонние вещества.

«Пищевая цепь»

ВВЕДЕНИЕ

Полициклические ароматические углеводороды (ПАУ) отнсятся к группе стойких органических загрязнителей. Они обладают ярко выраженными канцерогенными свойствами. Одним из наиболее опасных представителей ПАУ является бенз(а)пирен (БП).

Бенз(а)пирен был открыт в 1933 году, позже, в 1935 году были проведены исследования подтверждающие его канцерогенность. На сегодняшний день бенз(а)пирен относят к канцерогенам 1-го класса опасности. Он обладает мутагенными свойствами. Даже небольшая концентрация БП негативно влияет на организм человека. Концентрация БП в воздухе превышающая предельно допустимую (ПДК) при длительном воздействии может вызвать рак легких. Поэтому остро стоит проблема его обнаружения и определения. Исходя из его физико-химических свойств был разработан ряд однотипных методик по его определению, отличающиеся только стадиями отбора и подготовки пробы. Целью моей работы было ознакомление со свойствами ПАУ и БП, изучение методов разделения ПАУ и методик определения БП.

ЛИТЕРАТУРНЫЙ ОБЗОР

Полициклические ароматические углеводороды (ПАУ)

Общие сведения

ПАУ - это высокомолекулярные органические соединения бензольного ряда, насчитывающий более 200 представителей. Они содержат от 2 до 7 бензольных колец. ПАУ широко распространены в природе и стабильны во времени. Они обладают канцерогенной и мутагенной актиностью. Из-за своей токсичности и канцерогенных свойств их относят к приоритетным загрязняющим веществам. Определение ПАУ используется при эколого-геохимических иследованиях. Наиболее токсичны из них 3, 4-бенз(а)пирен и 1, 12-бензперилен, особенно часто определяемые в объектах окружающей среды.

Полициклические ароматические углеводороды (аббревиатура ПАУ) - это устойчивые органические загрязнители. У них ярко выражены канцерогенные характеристики. Всего в этой группе значится свыше 200 представителей. Самым опасным из них считается бензапирен. Его часто обнаруживают при изучении объектов окружающей среды.

О бензапирене

Открытие этого компонента произошло в 1933 году. Через два года благодаря тщательным исследованиям была доказана его канцерогенность.

Сегодня бензапирен причисляется к первому классу опасности. У него есть мутагенные характеристики. И даже скромная его концентрация пагубно отражается на человеческом организме. При его значительных пропорциях в воздухе (выше нормы) и долгом воздействии возникает рак легких.

По этой причине особо актуально его обнаружение. На основе свойств вещества были созданы методики для его вычисления. Они отличаются только этапами отбора и формирования пробы.

Разбор категории ПАУ

В нее входят элементы, чья химическая конструкция содержит минимум три бензольных кольца. Самые простые полициклические ароматические углеводороды - это антрацен и фенантрен. Они не мутируют и не отличаются токсичными качествами. На них по своему строению похожи пирен и бензперилен.

Какие полициклические ароматические углеводороды ПАУ являются канцерогенами? Как особо токсичные (помимо бензапирена) квалифицируются холатрен, дибензпирен и перилен. Они представляют наибольшую угрозу для человеческого здоровья.

Условия для генерации

Образование ПАУ происходит при сгорании следующих продуктов:

  • нефтяной категории;
  • угля;
  • древесины;
  • мусорных отходов;
  • табачных изделий;
  • пищи.

Чем ниже температурные показатели в аппарате сжигания, тем больше количество этих веществ. В относительно скромных пропорциях бензапирен выявлен в асфальте.

Вместе с другой продукцией сгорания полициклические ароматические углеводороды проникают в воздух. При комнатных температурных данных все эти компоненты имеют твердую кристаллическую форму. Они плавятся при 200 °С

Когда охлаждаются горячие газы, включающие в себя ПАУ, перечисленные элементы скапливаются на участке выбросов. Например, на дистанции в 2-5 км от угольной ТЭС поверхностный слой почвы насыщен такими загрязнителями. Но больший их процент по воздуху устремляется на солидные расстояния.

Лучший адсорбент для полициклических ароматических углеводородов ПАУ - это сажа. На одном квадратном сантиметре ее поверхности могут концентрироваться примерно 10 14 молекул этих веществ.

Источники и вклады

Здесь статистика учитывает в основном выбросы бензапирена. Приводится показатель т/год. На примере США получаются такие данные.

Последнее значение является наименьшим и на первый взгляд может показаться несущественным. Однако при локальных пропорциях получаются довольно весомые показатели. Они приведены в таблице ниже.

В питьевой воде канцероген концентрируется в объеме 0,3-2,0 нг/л.

Полициклические ароматические углеводороды, находясь в атмосфере, проявляют особую устойчивость. Они постепенно преобразуются в прочие продукты, взаимодействуя с озоном и диоксидом азота. В первом случае появляются полиядерные хиноны. Во втором - нитробензапирены.

Обнаружение ПАУ в воздухе

Для этого применяются следующие методики:

  1. Газовая хроматография (ГХ).
  2. Жидкостная хроматография высокой эффективности (ЖХВЭ)

Сначала разделяются основные 16 компонентов группы ПАУ. Для этого используются специальные колонки. В действия по методу 1 используются капиллярные устройства. Во втором случае - высокоэффективные.

Для развития эффективности результата проводится предварительное отсеивание среди прочих соединений, имеющихся в пробах. Для этого применяется ЖХ с пониженным давлением в одной из двух систем:

  1. Жидкость - твердое вещество.
  2. Жидкость - жидкость.

Здесь применяется любая подходящая адсорбция, например, силикагель. Также для повышения объективности результатов применяются детекторы повышенной чувствительности.

Первый метод дополняется:

  1. Пламенно-ионизационным устройством. Функция - количественные измерения после определения соединения прочей несвязанной методикой.
  2. Масс-спектрометром. Дает количественные данные, но часто они ограничены из-за совпадения масс веществ с разной структурой

Вторая методика дополняется такими детекторами:

  1. Флуориметрическим. Определяет следовые количества ПАУ, но не дает данные о их строении.
  2. Спектрофотометрическим. Объективно идентифицирует соединения и их структуру.

Занимаясь подбором аналитического оборудования, предназначенного для отсеивания, определения и количественного изучения подобных элементов, следует учитывать определенные критерии:

  1. Степень вычисляемого содержания в анализируемых пробах.
  2. Количество смежных примесей и субстанций.
  3. Методику реализации измерительных операций.
  4. Потенциал серийной техники.

С позиции разделительной технологии выгоднее применять капиллярную ГХ. Число соединений, которое в теории делится на временную единицу в данной методике, в 5-10 раз больше при аналогии с методом ЖХВЭ. Однако здесь нет явного ее преимущества. Поскольку некоторые соединения эффективно делятся именно при помощи жидкой хроматографии. Например, это пирен-дибензо(a,h)антрацен

Обнаружение в почве

В ней ПАУ оказываются вследствие выбросов. Их присутствие обеспечивает завод или другой источник, вызвавший загрязнения. Для обнаружения здесь и анализа полициклических ароматических углеводородов методы используются следующие:

  1. Хроматографического разделения. Отделяет ПАУ от прочих соединений.
  2. Флуориметрии. Подробно анализирует эти вещества в почве.

Как правило, для изучения берутся образцы с участков, приближенных к каким-либо предприятиям. Это торфянистые и подзолистые почвы.

Исследования вод

Обнаруживать ПАУ в водоемах и сточных водах довольно сложно. Применяется жидкостный хромотограф высокой эффективности. У него есть:

  1. Градиентный механизм элюирования.
  2. Ультрафиолетовый датчик на диодной матрице.
  3. Флуоресцентный индикатор.

Разбавленные растворы полициклических ароматических углеводородов в воде извлекаются с помощью метиленхлорида. Они очищаются на колонке с применением силикагеля. Удаляются лишние примеси. В результате получается экстракт. Он высушивается и растворяется в составе из воды и ацетонитрила. Дальнейший анализ проводится при помощи индикатора с диодной матрицей.

Ситуация с пищей

В еду, подвергающуюся термической обработке, может проникать бензапирен. Этот представитель полициклических ароматических углеводородов в пищевых продуктах может содержаться в разных пропорциях. Они показаны в следующей таблице.

Сегодня канцероген обнаруживается во многих распространенных продуктах: хлебе, молоке, масле, картофеле и т. д. Если продукты обрабатывать правильно, можно снизить концентрацию вредных веществ. Овощи и фрукты следует тщательно мыть. Так устраняется порядка 20% ПАУ.

Они могут появляться вследствие реакции элюентов (элементов, образующихся в растворителе) с полимерной упаковкой. Например, молочный жир образует порядка 95% бензапирена из парафино-бумажной тары, либо стаканчиков.

Влияние на человека

Годовой показатель получения бензапирена взрослым человеком вместе с пищей составляет 0,006 мг. В районах с проблемной экологией параметр выше втрое.

Допустимые нормы доли вещества таковы.

Влияние полициклических ароматических углеводородов на человека таково: попав в организм, они вступают в реакцию с ферментами и формируют эпоксисоединение. Оно контактирует с гуанином. В итоге ДНК не синтезируется, возникают мутации. Это оптимальные условия для развития раковых опухолей. При большой концентрации в воздухе ПАУ проникают в легкие, провоцируя их рак.

Вам также будет интересно:

Восстания Жакерия: причины, события и последствия
ервоначальный успех в войне был на стороне Англии, одержавшей крупные победы над...
Механическое движение: равномерное и неравномерное
Раздел 1 МЕХАНИКА Глава 1: О с н о в ы к и н е м а т и к и Механическое движение....
Система мышления эдварда де боно
), после чего приступил к изучению медицины в Университете Мальты. Образование продолжил в...
Бедная лиза
В романах и повестях русских писателей до начала 19 века чаще всего прослеживаются сюжеты,...
Краткое содержание повести гроза островского
Далеко не всегда читатель может оценить роль изобразительных средств, прочитав только...