Частные производные функции трех переменных. Частные производные первого порядка

Общий принцип нахождения частных производных порядка второго порядка функции трёх переменных аналогичен принципу нахождения частных производных 2-го порядка функции двух переменных.

Для того чтобы найти частные производные второго порядка, необходимо сначала найти частные производные первого порядка или, в другой записи:

Частных производных второго порядка девять штук.

Первая группа – это вторые производные по тем же переменным:

Или – вторая производная по «икс»;

Или – вторая производная по «игрек»;

Или – вторая производная по «зет».

Вторая группа – это смешанные частные производные 2-го порядка, их шесть:

Или – смешанная производная «по икс игрек»;

Или – смешанная производная «по игрек икс»;

Или – смешанная производная «по икс зет»;

Или – смешанная производная «по зет икс»;

Или – смешанная производная «по игрек зет»;

Или – смешанная производная «по зет игрек».

Как и для случая функции двух переменных, при решении задач можно ориентироваться на следующие равенства смешанных производных второго порядка:

Примечание: строго говоря, это не всегда так. Для равенства смешанных производных необходимо выполнение требования их непрерывности.

На всякий случай несколько примеров, как правильно читать сиё безобразие вслух:

– «у два штриха дважды по игрек»;

– «дэ два у по дэ зет квадрат»;

– «у два штриха по икс по зет»;

– «дэ два у по дэ зет по дэ игрек».

Пример 10

Найти все частные производные первого и второго порядка для функции трёх переменных:

.

Решение: Сначала найдем частные производные первого порядка:

Берём найденную производную

и дифференцируем её по «игрек»:

Берём найденную производную

и дифференцируем её по «икс»:

Равенство выполнено. Хорошо.

Разбираемся со второй парой смешанных производных.

Берём найденную производную

и дифференцируем её по «зет»:

Берём найденную производную

и дифференцируем её по «икс»:

Равенство выполнено. Хорошо.

Аналогично разбираемся с третьей парой смешанных производных:

Равенство выполнено. Хорошо.

После проделанных трудов гарантированно можно утверждать, что, во-первых, мы правильно нашли все частные производные 1-го порядка, во-вторых, правильно нашли и смешанные частные производные 2-го порядка.

Осталось найти ещё три частные производные второго порядка, вот здесь уже во избежание ошибок следует максимально сконцентрировать внимание:

Готово. Повторюсь, задание не столько сложное, сколько объемное. Решение можно сократить и сослаться на равенства смешанных частных производных, но в этом случае не будет проверки. Поэтому лучше потратить время и найти все производные (к тому же это может потребовать преподаватель), или, в крайнем случае, выполнить проверку на черновике.

Пример 11

Найти все частные производные первого и второго порядка для функции трёх переменных

.

Это пример для самостоятельного решения.

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение: Найдем частные производные первого порядка.

Составим полный дифференциал первого порядка:

Пример 6: Решение: M (1, -1, 0):

Пример 7: Решение: Вычислим частные производные первого порядка в точке M (1, 1, 1):


Пример 9: Решение:



Пример 11: Решение: Найдем частные производные первого порядка:

Найдем частные производные второго порядка:


.

Интегралы

8.1. Неопределенный интеграл. Подробные примеры решений

Начнем изучение темы «Неопределенный интеграл» , а также подробно разберем примеры решений простейших (и не совсем) интегралов. Как обычно, мы ограничимся минимумом теории, которая есть в многочисленных учебниках, наша задача – научиться решать интегралы.

Что нужно знать для успешного освоения материала? Для того, чтобы справиться с интегральным исчислением, Вам необходимо уметь находить производные, минимум, на среднем уровне. Не лишним опытом будет, если у Вас за плечами несколько десятков, а лучше – сотня самостоятельно найденных производных. По крайне мере, Вас не должны ставить в тупик задания на дифференцирование простейших и наиболее распространенных функций.

Казалось бы, причем здесь вообще производные, если речь в статье пойдет об интегралах?! А дело вот в чем. Дело в том, что нахождение производных и нахождение неопределенных интегралов (дифференцирование и интегрирование) – это два взаимно обратных действия , как, например, сложение/вычитание или умножение/деление. Таким образом, без навыка и какого-никакого опыта нахождения производных, к сожалению, дальше не продвинуться.

В этой связи нам потребуются следующие методические материалы: Таблица производных и Таблица интегралов .

В чем сложность изучения неопределенных интегралов? Если в производных имеют место строго 5 правил дифференцирования, таблица производных и довольно четкий алгоритм действий, то в интегралах всё иначе. Существуют десятки способов и приемов интегрирования. И, если способ интегрирования изначально подобран неверно (т.е. Вы не знаете, как решать), то интеграл можно «колоть» буквально сутками, как самый настоящий ребус, пытаясь приметить различные приемы и ухищрения. Некоторым даже нравится.

Между прочим, нам довольно часто приходилось слышать от студентов (не гуманитарных специальностей) мнение вроде: «У меня никогда не было интереса решить предел или производную, но вот интегралы – совсем другое дело, это увлекательно, всегда есть желание «взломать» сложный интеграл». Стоп. Хватит чёрного юмора, переходим к этим самым неопределенным интегралам.

Коль скоро способов решения существует много, то с чего же начать изучение неопределенных интегралов чайнику? В интегральном исчислении существуют, на наш взгляд, три столпа или своеобразная «ось», вокруг которой вращается всё остальное. В первую очередь следует хорошо разобраться в простейших интегралах (эта статья).

Потом нужно детально проработать урок . ЭТО ВАЖНЕЙШИЙ ПРИЁМ! Может быть, даже самая важная статья из всех статей, посвященных интегралам. И, в-третьих, обязательно следует ознакомиться с методом интегрирования по частям , поскольку с помощью него интегрируется обширный класс функций. Если Вы освоите хотя бы эти три урока, то уже «не два». Вам могут «простить» незнание интегралов от тригонометрических функций , интегралов от дробей , интегралов от дробно-рациональных функций , интегралов от иррациональных функций (корней) , но вот если «сесть в лужу» на методе замены или методе интегрирования по частям – то это будет очень и очень скверно.

Итак, начинаем с простого. Посмотрим на таблицу интегралов. Как и в производных, мы замечаем несколько правил интегрирования и таблицу интегралов от некоторых элементарных функций. Любой табличный интеграл (да и вообще любой неопределенный интеграл) имеет вид:

Сразу разбираемся в обозначениях и терминах:

– значок интеграла.

– подынтегральная функция (пишется с буквой «ы»).

– значок дифференциала. Что это такое, мы рассмотрим совсем скоро. Главное, что при записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.

– подынтегральное выражение или «начинка» интеграла.

первообразная функция.

. Не нужно сильно загружаться терминами, здесь самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .

Решить неопределенный интеграл – это значит найти множество первообразных функций от данной подынтегральной функции

Еще раз посмотрим на запись:

Посмотрим в таблицу интегралов.

Что происходит? Левые части у нас превращаются в другие функции: .

Упростим наше определение:

Решить неопределенный интеграл– это значит ПРЕВРАТИТЬ его в неопределенную (с точностью до константы) функцию , пользуясь некоторыми правилами, приемами и таблицей.

Возьмем, например, табличный интеграл . Что произошло? Символическая запись превратилась в множество первообразных функций .

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, или первообразная функция с теоретической точки зрения. Достаточно просто осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.

Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найденаправильно, справедливо следующее:

Иными словами, если продифференцировать правильный ответ, то обязательно должна получиться исходная подынтегральная функция.

Вернемся к тому же табличному интегралу .

Убедимся в справедливости данной формулы. Берем производную от правой части:

– это исходная подынтегральная функция.

Вот, кстати, стало понятнее, почему к функции всегда приписывается константа . При дифференцировании константа всегда превращается в ноль.

Решить неопределенный интеграл – это значит найти множество всех первообразных, а не какую-то одну функцию. В рассматриваемом табличном примере , , , и т. д. – все эти функции являются решением интеграла . Решений бесконечно много, поэтому записывают коротко:

Таким образом, любой неопределенный интеграл достаточно легко проверить. Это некоторая компенсация за большое количество интегралов разных видов.

Переходим к рассмотрению конкретных примеров. Начнем, как и при изучении производной, с двух правил интегрирования:

– константу C можно (и нужно) вынести за знак интеграла.

– интеграл суммы (разности) двух функций равен сумме (разности) двух интегралов. Данное правило справедливо для любого количества слагаемых.

Как видите, правила, в принципе, такие же, как и для производных. Иногда их называют свойствами линейности интеграла.

Пример 1

Найти неопределенный интеграл.

Выполнить проверку.

Решение: Удобнее преобразовать его, как.

(1) Применяем правило . На забываем записать значок дифференциала dx под каждым интегралом. Почему под каждым? dx – это полноценный множитель. Если расписывать детально, то первый шаг следует записать так:

.

(2) Согласно правилу выносим все константы за знаки интегралов. Обратите внимание, что в последнем слагаемом tg 5 – это константа, её также выносим.

Кроме того, на данном шаге готовим корни и степени для интегрирования. Точно так же, как и при дифференцировании, корни надо представить в виде. Корни и степени, которые располагаются в знаменателе – перенести вверх.

Примечание: в отличие от производных, корни в интегралах далеко не всегда следует приводить к виду , а степени переносить вверх.

Например, – это готовый табличный интеграл, который уже посчитали до Вас, и всякие китайские хитрости вроде совершенно не нужны. Аналогично: – это тоже табличный интеграл, нет никакого смысла представлять дробь в виде . Внимательно изучите таблицу!

(3) Все интегралы у нас табличные. Осуществляем превращение с помощью таблицы, используя формулы: , и

для степенной функции - .

Следует отметить, что табличный интеграл – это частный случай формулы для степенной функции: .

Константу C достаточно приплюсовать один раз в конце выражения

(а не ставить их после каждого интеграла ).

(4)Записываем полученный результат в более компактном виде, когда все степени вида

снова представляем в виде корней, а степени с отрицательным показателем сбрасываем обратно в знаменатель.

Проверка. Для того чтобы выполнить проверку нужно продифференцировать полученный ответ:

Получена исходная подынтегральная функция , т. е. интеграл найден правильно. От чего плясали, к тому и вернулись. Хорошо, когда история с интегралом заканчивается именно так.

Время от времени встречается немного другой подход к проверке неопределенного интеграла, когда от ответа берется не производная, а дифференциал:

.

В итоге получаем не подынтегральную функцию, а подынтегральное выражение.

Не стоит пугаться понятия дифференциал.

Дифференциал – это производная, умноженная на dx .

Однако нам важны не теоретические тонкости, а то, что с этим дифференциалом дальше делать. Дифференциал раскрывается следующим образом: значок d убираем, справа над скобкой ставим штрих, в конце выражения приписываем множитель dx :

Получено исходное подынтегральное выражение , то есть интеграл найден правильно.

Как видите, дифференциал сводится к нахождению производной. Второй способ проверки мне нравится меньше, так как приходиться дополнительно рисовать большие скобки и тащить значок дифференциала dx до конца проверки. Хотя он корректнее, или «солиднее», что ли.

На самом деле можно было умолчать о втором способе проверки. Дело не в способе, а в том, что мы научились раскрывать дифференциал. Еще раз.

Дифференциал раскрывается следующим образом:

1) значок d убираем;

2) справа над скобкой ставим штрих (обозначение производной);

3) в конце выражения приписываем множитель dx .

Например:

Запомните это. Рассмотренный приём потребуется нам очень скоро.

Пример 2

.

Когда мы находим неопределенный интеграл, то ВСЕГДА стараемся сделать проверку , тем более, для этого есть прекрасная возможность. Далеко не все типы задач в высшей математике являются подарком с этой точки зрения. Неважно, что часто в контрольных заданиях проверки не требуется, её никто, и ничто не мешает провести на черновике. Исключение можно сделать лишь тогда, когда не хватает времени (например, на зачете, экзамене). Лично я всегда проверяю интегралы, а отсутствие проверки считаю халтурой и некачественно выполненным заданием.

Пример 3

Найти неопределенный интеграл:

. Выполнить проверку.

Решение: Анализируя интеграл, мы видим, что у нас под интегралом произведение двух функций, да еще и возведение в степень целого выражения. К сожалению, на поприще интегральной битвы нет хороших и удобных формул для интегрирования произведения и частного в виде: или .

Поэтому, когда дано произведение или частное, всегда имеет смысл посмотреть, а нельзя ли преобразовать подынтегральную функцию в сумму? Рассматриваемый пример – тот случай, когда можно.

Сначала приведём полное решение, комментарии будут ниже.

(1) Используем старую добрую формулу квадрата суммы для любых действительных чисел , избавляясь от степени над общей скобкой. за скобки и применяя формулу сокращенного умножения в обратном направлении: .

Пример 4

Найти неопределенный интеграл

Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

Пример 5

Найти неопределенный интеграл

. Выполнить проверку.

В данном примере подынтегральная функция представляет собой дробь. Когда мы видим в подынтегральном выражении дробь, то первой мыслью должен быть вопрос: «А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы её упростить?».

Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, значит, можно почленно разделить числитель на знаменатель:

Действия с дробными степенями мы не комментируем, так как о них неоднократно шла речь в статьях о производной функции.

Если Вас все-таки ставит в тупик такой пример, как

и ни в какую не получается правильный ответ ,

Также обратите внимание, что в решении пропущен один шаг, а именно, применение правил , . Обычно при определенном опыте решения интегралов данные правила считают очевидным фактом и не расписывают подробно.

Пример 6

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

В общем случае с дробями в интегралах не всё так просто, дополнительный материал по интегрированию дробей некоторых видов можно найти в статье: Интегрирование некоторых дробей . Но, прежде чем перейти к вышеуказанной статье, необходимо ознакомиться с уроком: Метод замены в неопределенном интеграле . Дело в том, что подведение функции под дифференциал или метод замены переменной является ключевым моментом в изучении темы, поскольку встречается не только «в чистых заданиях на метод замены», но и во многих других разновидностях интегралов.

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение:

В данном примере мы использовали формулу сокращенного умножения

Пример 6: Решение:


Метод замены переменной в неопределенном интеграле. Примеры решений

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений , где объяснено в доступной форме, что такое интеграл и подробно разобраны базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала.

– Собственно замена переменной.

По сути дела, это одно и то же, но оформление решения выглядит по-разному. Начнем с более простого случая.

Пример. Найти частные производные функции y x yxz

Решение. Полагая y =const , находимy xy x z

Полагая x =const , находим 2 2) 1 (1 y x x y xx y z

Пример. Найти значения частных производных функции в точке M (1, – 1, 0). xyzyxu)ln(

Решение. Полагая y = const , z = const , находим 10 11 22 1)02(1 22 22 , Ì czy yz yx x yzx yxx u

Аналогично находим 10 11 22 1)20(1 22 22 , M czx xz yx y xzy yxy u 110 , M cyx xyxy z u

Геометрическим смыслом частной производной (например,) является тангенс угла наклона касательной, проведенной в точке M 0 (x 0 , y 0 , z 0) к сечению поверхности плоскостью у = у 0. xz

Предположим, что функция z = f (x , y) имеет непрерывные частные производные), (yxf x z x), (yxf y z y

Эти производные в свою очередь являются функциями независимых переменных x и y. Будем называть и частными производными 1 — го порядка.), (yxf x), (yxf y

Частными производными 2 -го порядка называются частные производные от частных производных 1 -го порядка. Для функции z = f (x , y) двух переменных можно найти четыре частные производные 2 -го порядка, которые обозна-чаются следующим обр-м:

В общем случае смешанные частные производные могут не совпадать, однако для них справедлива теорема: Теорема. Если смешанные частные производные и непрерывны в некоторой точке M (x , y) , то они равны, т. е. xyfyxf), (yxfyxf yxxy

Ч астными производными n – го порядка называются частные производные от частных производных (n – 1)– го порядка. Их обозначают и т. д. 221 , yx z x z n n n

Пример. Найти частные производные 2 -го порядка функции)1 sin(23 xyyxz

Решение. Последовательно находим); 1 cos(3 22 xyyyx x z cy); 1 cos(2 3 xyxyx y z cx

); 1 sin(6)1 cos(3 22 22 2 2 xyyxy xyyyx xx z cy cy); 1 sin()1 cos(6)1 cos(3 2 22 2 xyyx xyyyx z cx cx

)1 sin()1 cos(6 1 cos(2 2 3 2 xyyx xyxyx xxy z cy cy)1 sin(2)1 cos(2 23 3 2 2 xyxx xyxyx yy z cx cx

Рассмотрим функцию z = f (x , y). Дадим аргументу x приращение Δ x , а аргументу y приращение Δ y. Тогда z получит приращение которое называется полным приращением функции z.), (yxfyyxxfz

Предположим, что f (x , y) в точке M (x , y) имеет непрерывные частные производные.

Определение. Дифференциалом 1 -го порядка функции z = f (x , y) называется главная часть полного приращения Δ z этой функции, линейная относительно Δ x и Δ y , обозначается символом dz или df и вычисляется по формуле y y z x x z zd

Так как дифференциалы независимых переменных совпадают с их приращениями, т. е. dx = Δ x , dy = Δ y , то эту формулу можно записать в виде: dy y z dx x z zd

Геометрическим смыслом полного дифференциала функции двух переменных f (x , y) в точке (х 0 , у 0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х 0 , у 0) к точке (х 0 + х, у 0 + у).

Геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

Дифференциалом 2 -го порядка функции z = f (x , y) называется дифференциал от ее дифференциала 1 -го порядка и обозначается)(zzddd

Если все частные производные 2 -го порядка функции z = f (x , y) непрерывны, то имеет место формула: 2 2 2 y y z yx yx z x x z zddddd

Пример. Найти дифференциалы 1 -го и 2 -го порядков функции y x yz 2 x

Решение. Найдем частные производные 1 -го и 2 -го порядков: y yx x z 1 2 2 2 y x x y z

; 202 1 2 2 2 yy y xy xx z cy ; 1 2 2 2 y xy yyx z cx 33 22 22 2)2(0 y x yx y x x y y z cy

Следовательно, дифференциалы 1 -го и 2 -го порядков запишутся в виде: dy y x xdx y xyz)() 1 2(d 2 2 2 32 222) 1 2(22 y y x yx y xxyzddddd

Пусть функция f (x , y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:), (yxfyyxxfz zyxfyyxxf), (

Если подставить в эту формулу выражение то получим приближенную формулу: y yf x xf dzz y y yxf x x yxf yyxxf), (

Пример. Вычислить приближенно значение исходя из значения функции при x = 1, y = 2, z = 102, 1 ln 04, 1 99, 1 zxu y ln

Решение. Из заданного выражения определим x = 1, 04 – 1 = 0, 04, y = 1, 99 – 2 = -0, 01, z = 1, 02 – 1 = 0, 02. Найдем значение функции u (x , y , z) = 11 ln

Находим частные производные: 1 12 12 ln 2 1 zx xy x u y y 0 ln 2 ln zx xx y u y y

Полный дифференциал функции u равен: 2 1 ln 2 1 zx z z u y

05, 001, 004, 0 02, 0 21 01, 0004, 01 02, 001, 004, 0 zu yu xudu

Точное значение этого выражения: 1, 049275225687319176. 05, 105, 01)1, 2, 1(02, 1 ln 04, 1 99, 1 duu

Касательной плоскостью к поверхности в ее точке M 0 называется плоскость, которая содержит все касательные к кривым, проведенным на поверхности через эту точку.

Нормалью к поверхности в точке M 0 называется прямая, проходящая через эту точку и перпендикулярная касательной плоскости, проведенной в данной точке.

Если поверхность задана уравнением F (x , y , z) = 0 то уравнение касательной плоскости в точке M 0 (x 0 , y 0 , z 0) имеет вид: 0))((00 0000 zz. MF yy. MFxx. MF z yx

Уравнения нормали, проведенной к поверхности в точке M 0 (x 0 , y 0 , z 0) , запишутся следующим образом:)()()(0 0 0 MF zz MF yy MF xx zyx

Если поверхность задана уравнением z = f (x , y) , то уравнение касательной плоскости в точке M 0 (x 0 , y 0 , z 0) имеет вид:))(, (000 0000 yyyxf xxyxfzz y x

а уравнения нормали запишутся так: 1), (0 00 0 zz yxf yy yxf xx yx

Пример. Составить уравнения касательной плоскости и нормали к поверхности в точке M 0 (x 0 , y 0 , z 0) , если 01332 22 yzxzxyyx. 1, 2 00 yx

Решение. Подставляя x 0 и y 0 в уравнение поверхности, находим значение z 0: откуда находим z 0 = 1. Следовательно, M 0 (2, – 1, 1) – точка касания. 01)1(32)1(23)1(2400 2 zz

По условию задачи поверхность задана неявно. Обозначим и найдем частные производные в точке M 0 (2, – 1, 1) : 1332), (22 yzxzxyyxzyx.

, 32 zyx. F x 21)1(322)(0 MF x , 334 zxy. F y 51323)1(4)(0 MF y , 3 yx. F z 1)1(32)(0 MF z

Подставля ем найденные значения частных производных в уравнение касательной плоскости 0))((00 0000 zz. MF yy. MFxx. MF z yx

У равнения нормали име ю т вид 1 1 5 1 2 2 zyx

Определение. Функция z = f (x , y) имеет максимум в точке M 0 (x 0 , y 0) , если существует такая окрестность этой точки, что для любых точек M (x , y) из этой окрестности выполняется неравенство), (00 yxfyxf

Определение. Частными производными второго порядка от функции называются частные производные от ее частных производных первого порядка.

Обозначения частных производных второго порядка:

Для практических примеров справедливо следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверять правильность нахождения частных производных первого порядка.

Примеры.

а) Найти частные производные второго порядка функции

Решение.

1.Считаем переменную y

2. Полученную функцию еще раз продифференцируем по «икс», т.е. найдем вторую производную по «икс»:

3.Считаем переменную х константой, применяем правило дифференцирования суммы, правило вынесение постоянного множителя за знак производной и табличную производную степенной функции:

4. Полученную функцию еще раз продифференцируем по «игрек», т.е. найдем вторую производную по «игрек»:

5. Найдем смешанную производную «икс по игрек». Для этого первую производную по «икс» продифференцируем по «игрек».

5. Найдем смешанную производную «игрек по икс». Для этого первую производную по «игрек» продифференцируем по «икс».

б) Найти частные производные первого порядка функции Проверить, что Записать полный дифференциал первого порядка dz.

Решение.

1.Найдем частные производные первого порядка, применяя правила вычисления производной произведения, суммы, вынесения постоянного множителя за знак производной и табличные интегралы тригонометрических функций:

2. Найдем смешанные производные второго порядка:

3. Составим полный дифференциал первого порядка:

в) Показать, что данная функция удовлетворяет уравнению

Решение.

1.Найдем частную производную заданной функции по «икс»:

2. Умножим полученное выражение х 2 :

3. От полученной функции найдем частную производную по «икс»:

4. Найдем частную производную заданной функции по «игрек»:

5. Вычислим вторую производную по «игрек»:

6. Умножим полученную функцию на у 2 :

7. Вычтем из результата, полученного в п.5, результат п.6:

Что и требовалось показать.


Похожая информация:

  1. V3: {{101}} 04.07.14. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами (общее решение)

Частные производные функции двух переменных.
Понятие и примеры решений

На данном уроке мы продолжим знакомство с функцией двух переменных и рассмотрим, пожалуй, самое распространенное тематическое задание – нахождение частных производных первого и второго порядка, а также полного дифференциала функции . Студенты-заочники, как правило, сталкиваются с частными производными на 1 курсе во 2 семестре. Причем, по моим наблюдениям, задание на нахождение частных производных практически всегда встречается на экзамене.

Для эффективного изучения нижеизложенного материала вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Раздобыть справочный материал можно на странице Математические формулы и таблицы .

Быстренько повторим понятие функции двух переменных , я постараюсь ограничиться самым минимумом. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: – функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

С геометрической точки зрения функция двух переменных чаще всего представляет собой поверхность трехмерного пространства (плоскость, цилиндр, шар, параболоид, гиперболоид и т. д.). Но, собственно, это уже больше аналитическая геометрия, а у нас на повестке дня математический анализ, который никогда не давал списывать мой вузовский преподаватель является моим «коньком».

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной .

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций . Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас:

…да, кстати, для этой темы я таки создал маленькую pdf-книжку , которая позволит «набить руку» буквально за пару часов. Но, пользуясь сайтом, вы, безусловно, тоже получите результат – только может чуть медленнее:

Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения :
или – частная производная по «икс»
или – частная производная по «игрек»

Начнем с . Когда мы находим частную производную по «икс», то переменная считается константой (постоянным числом) .

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования , . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(3) Используем табличные производные и .

(4) Упрощаем, или, как я люблю говорить, «причесываем» ответ.

Теперь . Когда мы находим частную производную по «игрек», то переменная считается константой (постоянным числом) .

(1) Используем те же правила дифференцирования , . В первом слагаемом выносим константу за знак производной, во втором слагаемом ничего вынести нельзя поскольку – уже константа.

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива и для (да и вообще почти для любой буквы) . В частности, используемые нами формулы выглядят так: и .

В чём смысл частных производных?

По своей сути частные производные 1-го порядка напоминают «обычную» производную :

– это функции , которые характеризуют скорость изменения функции в направлении осей и соответственно. Так, например, функция характеризует крутизну «подъёмов» и «склонов» поверхности в направлении оси абсцисс, а функция сообщает нам о «рельефе» этой же поверхности в направлении оси ординат.

! Примечание : здесь подразумеваются направления, которые параллельны координатным осям .

В целях лучшего понимания рассмотрим конкретную точку плоскости и вычислим в ней значение функции («высоту»):
– а теперь представьте, что вы здесь находитесь (НА САМОЙ поверхности).

Вычислим частную производную по «икс» в данной точке:

Отрицательный знак «иксовой» производной сообщает нам об убывании функции в точке по направлению оси абсцисс. Иными словами, если мы сделаем маленький-маленький (бесконечно малый) шажок в сторону острия оси (параллельно данной оси) , то спустимся вниз по склону поверхности.

Теперь узнаем характер «местности» по направлению оси ординат:

Производная по «игрек» положительна, следовательно, в точке по направлению оси функция возрастает . Если совсем просто, то здесь нас поджидает подъём в гору.

Кроме того, частная производная в точке характеризует скорость изменения функции по соответствующему направлению. Чем полученное значение больше по модулю – тем поверхность круче, и наоборот, чем оно ближе к нулю – тем поверхность более пологая. Так, в нашем примере «склон» по направлению оси абсцисс более крут, чем «гора» в направлении оси ординат.

Но то были два частных пути. Совершенно понятно, что из точки, в которой мы находимся, (и вообще из любой точки данной поверхности) мы можем сдвинуться и в каком-нибудь другом направлении. Таким образом, возникает интерес составить общую «навигационную карту», которая сообщала бы нам о «ландшафте» поверхности по возможности в каждой точке области определения данной функции по всем доступным путям. Об этом и других интересных вещах я расскажу на одном из следующих уроков, ну а пока что вернёмся к технической стороне вопроса.

Систематизируем элементарные прикладные правила:

1) Когда мы дифференцируем по , то переменная считается константой.

2) Когда же дифференцирование осуществляется по , то константой считается .

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения :
или – вторая производная по «икс»
или – вторая производная по «игрек»
или – смешанная производная «икс по игрек»
или – смешанная производная «игрек по икс»

Со второй производной нет никаких проблем. Говоря простым языком, вторая производная – это производная от первой производной .

Для удобства я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

В практических примерах можно ориентироваться на следующее равенство :

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».
Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание , так как никаких чудесных равенств для их проверки не существует.

Вторые производные также находят широкое практическое применение, в частности, они используются в задаче отыскания экстремумов функции двух переменных . Но всему своё время:

Пример 2

Вычислить частные производные первого порядка функции в точке . Найти производные второго порядка.

Это пример для самостоятельного решения (ответы в конце урока). Если возникли трудности с дифференцированием корней, вернитесь к уроку Как найти производную? А вообще, довольно скоро вы научитесь находить подобные производные «с лёту».

Набиваем руку на более сложных примерах:

Пример 3

Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

Значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

В данном случае:

То есть, в формулу нужно тупо просто подставить уже найденные частные производные первого порядка. Значки дифференциалов и в этой и похожих ситуациях по возможности лучше записывать в числителях:

И по неоднократным просьбам читателей, полный дифференциал второго порядка .

Он выглядит так:

ВНИМАТЕЛЬНО найдём «однобуквенные» производные 2-го порядка:

и запишем «монстра», аккуратно «прикрепив» квадраты , произведение и не забыв удвоить смешанную производную:

Ничего страшного, если что-то показалось трудным, к производным всегда можно вернуться позже, после того, как поднимите технику дифференцирования:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Рассмотрим серию примеров со сложными функциями:

Пример 5

Найти частные производные первого порядка функции .

Решение:

Пример 6

Найти частные производные первого порядка функции .
Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки». Знаете, всегда приятно, когда дробь удается превратить в ноль). Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в этом смысле ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь произведение двух функций, КАЖДАЯ из которых зависит от «икс» , а поэтому, нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: . Второе слагаемое зависит ТОЛЬКО от «икс», значит, считается константой и превращается в ноль. Для третьего слагаемого используем правило дифференцирования сложной функции.

Для тех читателей, которые мужественно добрались почти до конца урока, расскажу старый мехматовский анекдот для разрядки:

Однажды в пространстве функций появилась злобная производная и как пошла всех дифференцировать. Все функции разбегаются кто куда, никому не хочется превращаться! И только одна функция никуда не убегает. Подходит к ней производная и спрашивает:

– А почему это ты от меня никуда не убегаешь?

– Ха. А мне всё равно, ведь я «е в степени икс», и ты со мной ничего не сделаешь!

На что злобная производная с коварной улыбкой отвечает:

– Вот здесь ты ошибаешься, я тебя продифференцирую по «игрек», так что быть тебе нулем.

Кто понял анекдот, тот освоил производные, минимум, на «тройку»).

Пример 8

Найти частные производные первого порядка функции .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Ну вот почти и всё. Напоследок не могу не обрадовать любителей математики еще одним примером. Дело даже не в любителях, у всех разный уровень математической подготовки – встречаются люди (и не так уж редко), которые любят потягаться с заданиями посложнее. Хотя, последний на данном уроке пример не столько сложный, сколько громоздкий с точки зрения вычислений.

Рассмотрим функцию от двух переменных:

Поскольку переменные $x$ и $y$ являются независимыми, для такой функции можно ввести понятие частной производной:

Частная производная функции $f$ в точке $M=\left({{x}_{0}};{{y}_{0}} \right)$ по переменной $x$ — это предел

\[{{{f}"}_{x}}=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f\left({{x}_{0}}+\Delta x;{{y}_{0}} \right)}{\Delta x}\]

Аналогично можно определить частную производную по переменной $y$ :

\[{{{f}"}_{y}}=\underset{\Delta y\to 0}{\mathop{\lim }}\,\frac{f\left({{x}_{0}};{{y}_{0}}+\Delta y \right)}{\Delta y}\]

Другими словами, чтобы найти частную производную функции нескольких переменных, нужно зафиксировать все остальные переменные, кроме искомой, а затем найти обычную производную по этой искомой переменной.

Отсюда вытекает основной приём для вычисления таких производных: просто считайте, что все переменные, кроме данной, являются константой, после чего дифференцируйте функцию так, как дифференцировали бы «обычную» — с одной переменной. Например:

$\begin{align}& {{\left({{x}^{2}}+10xy \right)}_{x}}^{\prime }={{\left({{x}^{2}} \right)}^{\prime }}_{x}+10y\cdot {{\left(x \right)}^{\prime }}_{x}=2x+10y, \\& {{\left({{x}^{2}}+10xy \right)}_{y}}^{\prime }={{\left({{x}^{2}} \right)}^{\prime }}_{y}+10x\cdot {{\left(y \right)}^{\prime }}_{y}=0+10x=10x. \\\end{align}$

Очевидно, что частные производные по разным переменным дают разные ответы — это нормально. Куда важнее понимать, почему, скажем, в первом случае мы спокойно вынесли $10y$ из-под знака производной, а во втором — вовсе обнулили первое слагаемое. Всё это происходит из-за того, что все буквы, кроме переменной, по которой идёт дифференцирование, считаются константами: их можно выносить, «сжигать» и т.д.

Что такое «частная производная»?

Сегодня мы поговорим о функциях нескольких переменных и о частных производных от них. Во-первых, что такое функция нескольких переменных? До сих пор мы привыкли считать функцию как $y\left(x \right)$ или $t\left(x \right)$, или любую переменную и одну-единственную функцию от нее. Теперь же функция у нас будет одна, а переменных несколько. При изменении $y$ и $x$ значение функции будет меняться. Например, если $x$ увеличится в два раза, значение функции поменяется, при этом если $x$ поменяется, а $y$ не изменится, значение функции точно так же изменится.

Разумеется, функцию от нескольких переменных, точно так же как и от одной переменной, можно дифференцировать. Однако поскольку переменных несколько, то и дифференцировать можно по разным переменным. При этом возникают специфические правила, которых не было при дифференцировании одной переменной.

Прежде всего, когда мы считаем производную функции от какой-либо переменной, то обязаны указывать, по какой именно переменной мы считаем производную — это и называется частной производной. Например, у нас функция от двух переменных, и мы можем посчитать ее как по $x$, так и по $y$ — две частных производных у каждой из переменных.

Во-вторых, как только мы зафиксировали одну из переменных и начинаем считать частную производную именно по ней, то все остальные, входящие в эту функцию, считаются константами. Например, в $z\left(xy \right)$, если мы считаем частную производную по $x$, то везде, где мы встречаем $y$, мы считаем ее константой и обращаемся с ней именно как с константой. В частности при вычислении производной произведения мы можем выносить $y$ за скобку (у нас же константа), а при вычислении производной суммы, если у нас где-то получается производная от выражения, содержащего $y$ и не содержащего $x$, то производная этого выражения будет равна «нулю» как производная константы.

На первый взгляд может показаться, что я рассказываю о чем-то сложном, и многие ученики по началу путаются. Однако ничего сверхъестественного в частных производных нет, и сейчас мы убедимся в этом на примере конкретных задач.

Задачи с радикалами и многочленами

Задача № 1

Чтобы не терять время зря, с самого начала начнем с серьезных примеров.

Для начала напомню такую формулу:

Это стандартное табличное значение, которое мы знаем из стандартного курса.

В этом случае производная $z$ считается следующим образом:

\[{{{z}"}_{x}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}{{\left(\frac{y}{x} \right)}^{\prime }}_{x}\]

Давайте еще раз, поскольку под корнем стоит не $x$, а некое другое выражение, в данном случае $\frac{y}{x}$, то сначала мы воспользуемся стандартным табличным значением, а затем, поскольку под корнем стоит не $x$, а другое выражение, нам необходимо домножить нашу производную на еще одну из этого выражения по той же самой переменной. Давайте для начала посчитаем следующее:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=\frac{{{{{y}"}}_{x}}\cdot x-y\cdot {{{{x}"}}_{x}}}{{{x}^{2}}}=\frac{0\cdot x-y\cdot 1}{{{x}^{2}}}=-\frac{y}{{{x}^{2}}}\]

Возвращаемся к нашему выражению и записываем:

\[{{{z}"}_{x}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \left(-\frac{y}{{{x}^{2}}} \right)\]

В принципе, это все. Однако оставлять ее в таком виде неправильно: такую конструкцию неудобно использовать для дальнейших вычислений, поэтому давайте ее немного преобразуем:

\[\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \left(-\frac{y}{{{x}^{2}}} \right)=\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \frac{y}{{{x}^{2}}}=\]

\[=-\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \sqrt{\frac{{{y}^{2}}}{{{x}^{4}}}}=-\frac{1}{2}\sqrt{\frac{x\cdot {{y}^{2}}}{y\cdot {{x}^{4}}}}=-\frac{1}{2}\sqrt{\frac{y}{{{x}^{3}}}}\]

Ответ найден. Теперь займемся $y$:

\[{{{z}"}_{y}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot {{\left(\frac{y}{x} \right)}^{\prime }}_{y}\]

Выпишем отдельно:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{y}=\frac{{{{{y}"}}_{y}}\cdot x-y\cdot {{{{x}"}}_{y}}}{{{x}^{2}}}=\frac{1\cdot x-y\cdot 0}{{{x}^{2}}}=\frac{1}{x}\]

Теперь записываем:

\[{{{z}"}_{y}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot {{\left(\frac{y}{x} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \frac{1}{x}=\]

\[=\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \sqrt{\frac{1}{{{x}^{2}}}}=\frac{1}{2}\sqrt{\frac{x}{y\cdot {{x}^{2}}}}=\frac{1}{2\sqrt{xy}}\]

Все сделано.

Задача № 2

Этот пример одновременно и проще, и сложней, чем предыдущий. Сложнее, потому что здесь больше действий, а проще, потому что здесь нет корня и, кроме того, функция симметрична относительно $x$ и $y$, т.е. если мы поменяем $x$ и $y$ местами, формула от этого не изменится. Это замечание в дальнейшем упростит нам вычисление частной производной, т.е. достаточно посчитать одну из них, а во второй просто поменять местами $x$ и $y$.

Приступаем к делу:

\[{{{z}"}_{x}}={{\left(\frac{xy}{{{x}^{2}}+{{y}^{2}}+1} \right)}^{\prime }}_{x}=\frac{{{\left(xy \right)}^{\prime }}_{x}\left({{x}^{2}}+{{y}^{2}}+1 \right)-xy{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

Давайте посчитаем:

\[{{\left(xy \right)}^{\prime }}_{x}=y\cdot {{\left(x \right)}^{\prime }}=y\cdot 1=y\]

Однако многим ученикам такая запись непонятна, поэтому запишем вот так:

\[{{\left(xy \right)}^{\prime }}_{x}={{\left(x \right)}^{\prime }}_{x}\cdot y+x\cdot {{\left(y \right)}^{\prime }}_{x}=1\cdot y+x\cdot 0=y\]

Таким образом, мы еще раз убеждаемся в универсальности алгоритма частных производных: каким бы мы образом их не считали, если все правила применяются верно, ответ будет один и тот же.

Теперь давайте разберемся еще с одной частной производной из нашей большой формулы:

\[{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}={{\left({{x}^{2}} \right)}^{\prime }}_{x}+{{\left({{y}^{2}} \right)}^{\prime }}_{x}+{{{1}"}_{x}}=2x+0+0\]

Подставим полученные выражения в нашу формулу и получим:

\[\frac{{{\left(xy \right)}^{\prime }}_{x}\left({{x}^{2}}+{{y}^{2}}+1 \right)-xy{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\]

\[=\frac{y\cdot \left({{x}^{2}}+{{y}^{2}}+1 \right)-xy\cdot 2x}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\]

\[=\frac{y\left({{x}^{2}}+{{y}^{2}}+1-2{{x}^{2}} \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\frac{y\left({{y}^{2}}-{{x}^{2}}+1 \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

По $x$ посчитано. А чтобы посчитать $y$ от того же самого выражения, давайте не будем выполнять всю ту же последовательность действий, а воспользуемся симметрией нашего исходного выражения — мы просто заменим в нашем исходном выражении все $y$ на $x$ и наоборот:

\[{{{z}"}_{y}}=\frac{x\left({{x}^{2}}-{{y}^{2}}+1 \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

За счет симметрии мы посчитали это выражение гораздо быстрее.

Нюансы решения

Для частных производных работают все стандартные формулы, которые мы используем для обычных, а именно, производная частного. При этом, однако, возникают свои специфические особенности: если мы считаем частную производную $x$, то когда мы получаем ее по $x$, то рассматриваем ее как константу, и поэтому ее производная будет равна «нулю».

Как и в случае с обычными производными, частную (одну и ту же) можно посчитать несколькими различными способами. Например, ту же конструкцию, которую мы только что посчитали, можно переписать следующим образом:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=y\cdot {{\left(\frac{1}{x} \right)}^{\prime }}_{x}=-y\frac{1}{{{x}^{2}}}\]

\[{{\left(xy \right)}^{\prime }}_{x}=y\cdot {{{x}"}_{x}}=y\cdot 1=y\]

Вместе с тем, с другой стороны, можно использовать формулу от производной суммы. Как мы знаем, она равна сумме производных. Например, запишем следующее:

\[{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}=2x+0+0=2x\]

Теперь, зная все это, давайте попробуем поработать с более серьезными выражениями, поскольку настоящие частные производные не ограничиваются одними лишь многочленами и корнями: там встречаются и тригонометрия, и логарифмы, и показательная функция. Сейчас этим и займемся.

Задачи с тригонометрическими функциями и логарифмами

Задача № 1

Запишем следующие стандартные формулы:

\[{{\left(\sqrt{x} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{x}}\]

\[{{\left(\cos x \right)}^{\prime }}_{x}=-\sin x\]

Вооружившись этими знаниями, попробуем решить:

\[{{{z}"}_{x}}={{\left(\sqrt{x}\cdot \cos \frac{x}{y} \right)}^{\prime }}_{x}={{\left(\sqrt{x} \right)}^{\prime }}_{x}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot {{\left(\cos \frac{x}{y} \right)}^{\prime }}_{x}=\]

Отдельно выпишем одну переменную:

\[{{\left(\cos \frac{x}{y} \right)}^{\prime }}_{x}=-\sin \frac{x}{y}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{x}=-\frac{1}{y}\cdot \sin \frac{x}{y}\]

Возвращаемся к нашей конструкции:

\[=\frac{1}{2\sqrt{x}}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot \left(-\frac{1}{y}\cdot \sin \frac{x}{y} \right)=\frac{1}{2\sqrt{x}}\cdot \cos \frac{x}{y}-\frac{\sqrt{x}}{y}\cdot \sin \frac{x}{y}\]

Все, по $x$ мы нашли, теперь давайте займемся вычислениями по $y$:

\[{{{z}"}_{y}}={{\left(\sqrt{x}\cdot \cos \frac{x}{y} \right)}^{\prime }}_{y}={{\left(\sqrt{x} \right)}^{\prime }}_{y}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot {{\left(\cos \frac{x}{y} \right)}^{\prime }}_{y}=\]

Опять же посчитаем одно выражение:

\[{{\left(\cos \frac{x}{y} \right)}^{\prime }}_{y}=-\sin \frac{x}{y}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{y}=-\sin \frac{x}{y}\cdot x\cdot \left(-\frac{1}{{{y}^{2}}} \right)\]

Возвращаемся к исходному выражению и продолжаем решение:

\[=0\cdot \cos \frac{x}{y}+\sqrt{x}\cdot \frac{x}{{{y}^{2}}}\sin \frac{x}{y}=\frac{x\sqrt{x}}{{{y}^{2}}}\cdot \sin \frac{x}{y}\]

Все сделано.

Задача № 2

Запишем необходимую нам формулу:

\[{{\left(\ln x \right)}^{\prime }}_{x}=\frac{1}{x}\]

Теперь посчитаем по $x$:

\[{{{z}"}_{x}}={{\left(\ln \left(x+\ln y \right) \right)}^{\prime }}_{x}=\frac{1}{x+\ln y}.{{\left(x+\ln y \right)}^{\prime }}_{x}=\]

\[=\frac{1}{x+\ln y}\cdot \left(1+0 \right)=\frac{1}{x+\ln y}\]

По $x$ найдено. Считаем по $y$:

\[{{{z}"}_{y}}={{\left(\ln \left(x+\ln y \right) \right)}^{\prime }}_{y}=\frac{1}{x+\ln y}.{{\left(x+\ln y \right)}^{\prime }}_{y}=\]

\[=\frac{1}{x+\ln y}\left(0+\frac{1}{y} \right)=\frac{1}{y\left(x+\ln y \right)}\]

Задача решена.

Нюансы решения

Итак, от какой бы функции мы не брали частную производную, правила остаются одними и теми же, независимо от того, работаем ли мы с тригонометрией, с корнями или с логарифмами.

Неизменными остаются классические правила работы со стандартными производными, а именно, производная суммы и разности, частного и сложной функции.

Последняя формула чаще всего и встречается при решении задач с частными производными. Мы встречаемся с ними практически везде. Ни одной задачи еще не было, чтобы там нам она не попадалась. Но какой бы мы формулой не воспользовались, нам все равно добавляется еще одно требование, а именно, особенность работы с частными производными. Как только мы фиксируем одну переменную, все остальные оказываются константами. В частности, если мы считаем частную производную выражения $\cos \frac{x}{y}$ по $y$, то именно $y$ и является переменной, а $x$ везде остается константой. То же самое работает и наоборот. Ее можно выносить за знак производной, а производная от самой константы будет равна «нулю».

Все это приводит к тому, что частные производные от одного и того же выражения, но по разным переменным могут выглядеть совершенно по-разному. Например, посмотрим такие выражения:

\[{{\left(x+\ln y \right)}^{\prime }}_{x}=1+0=1\]

\[{{\left(x+\ln y \right)}^{\prime }}_{y}=0+\frac{1}{y}=\frac{1}{y}\]

Задачи с показательными функциями и логарифмами

Задача № 1

Для начала запишем такую формулу:

\[{{\left({{e}^{x}} \right)}^{\prime }}_{x}={{e}^{x}}\]

Зная этот факт, а также производную сложной функции, давайте попробуем посчитать. Я сейчас решу двумя различными способами. Первый и самый очевидный — это производная произведения:

\[{{{z}"}_{x}}={{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x}} \right)}^{\prime }}_{x}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{x}=\]

Давайте решим отдельно следующее выражение:

\[{{\left(\frac{x}{y} \right)}^{\prime }}_{x}=\frac{{{{{x}"}}_{x}}\cdot y-x.{{{{y}"}}_{x}}}{{{y}^{2}}}=\frac{1\cdot y-x\cdot 0}{{{y}^{2}}}=\frac{y}{{{y}^{2}}}=\frac{1}{y}\]

Возвращаемся к нашей исходной конструкции и продолжаем решение:

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \frac{1}{y}={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\left(1+\frac{1}{y} \right)\]

Все, по $x$ посчитано.

Однако как я и обещал, сейчас постараемся посчитать эту же частную производную другим способом. Для этого заметим следующее:

\[{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}={{e}^{x+\frac{x}{y}}}\]

В этом запишем так:

\[{{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x+\frac{x}{y}}} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}\cdot {{\left(x+\frac{x}{y} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}\cdot \left(1+\frac{1}{y} \right)\]

В результате мы получили точно такой же ответ, однако объем вычислений оказался меньшим. Для этого достаточно было заметить, что при произведении показатели можно складывать.

Теперь посчитаем по $y$:

\[{{{z}"}_{y}}={{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{y}={{\left({{e}^{x}} \right)}^{\prime }}_{y}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{y}=\]

\[=0\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{y}=\]

Давайте решим одно выражение отдельно:

\[{{\left(\frac{x}{y} \right)}^{\prime }}_{y}=\frac{{{{{x}"}}_{y}}\cdot y-x\cdot {{{{y}"}}_{y}}}{{{y}^{2}}}=\frac{0-x\cdot 1}{{{y}^{2}}}=-\frac{1}{{{y}^{2}}}=-\frac{x}{{{y}^{2}}}\]

Продолжим решение нашей исходной конструкции:

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \left(-\frac{x}{{{y}^{2}}} \right)=-\frac{x}{{{y}^{2}}}\cdot {{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\]

Разумеется, эту же производную можно было бы посчитать вторым способом, ответ получился бы таким же.

Задача № 2

Посчитаем по $x$:

\[{{{z}"}_{x}}={{\left(x \right)}_{x}}\cdot \ln \left({{x}^{2}}+y \right)+x\cdot {{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\]

Давайте посчитаем одно выражение отдельно:

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{x}=\frac{2x}{{{x}^{2}}+y}\]

Продолжим решение исходной конструкции: $$

Вот такой ответ.

Осталось по аналогии найти по $y$:

\[{{{z}"}_{y}}={{\left(x \right)}^{\prime }}_{y}.\ln \left({{x}^{2}}+y \right)+x\cdot {{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{y}=\]

Одно выражение посчитаем как всегда отдельно:

\[{{\left({{x}^{2}}+y \right)}^{\prime }}_{y}={{\left({{x}^{2}} \right)}^{\prime }}_{y}+{{{y}"}_{y}}=0+1=1\]

Продолжаем решение основной конструкции:

Все посчитано. Как видите, в зависимости от того, какая переменная берется для дифференцирования, ответы получаются совершенно разные.

Нюансы решения

Вот яркий пример того, как производную одной и той же функции можно посчитать двумя различными способами. Вот смотрите:

\[{{{z}"}_{x}}=\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)={{\left({{e}^{x}} \right)}^{\prime }}_{x}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \frac{1}{y}={{e}^{x}}\cdot {{e}^{^{\frac{x}{y}}}}\left(1+\frac{1}{y} \right)\]

\[{{{z}"}_{x}}={{\left({{e}^{x}}.{{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x+\frac{x}{y}}} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}.{{\left(x+\frac{x}{y} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{^{\frac{x}{y}}}}\left(1+\frac{1}{y} \right)\]

При выборе разных путей, объем вычислений может быть разный, но ответ, если все выполнено верно, получится одним и тем же. Это касается как классических, так и частных производных. При этом еще раз напоминаю: в зависимости от того, по какой переменной идет взятие производной, т.е. дифференцирование, ответ может получиться совершенно разный. Посмотрите:

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot 2x\]

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{y}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{y}=\frac{1}{{{x}^{2}}+y}\cdot 1\]

В заключение для закрепления всего этого материала давайте попробуем посчитать еще два примера.

Задачи с тригонометрической функция и функцией с тремя переменными

Задача № 1

Давайте запишем такие формулы:

\[{{\left({{a}^{x}} \right)}^{\prime }}={{a}^{x}}\cdot \ln a\]

\[{{\left({{e}^{x}} \right)}^{\prime }}={{e}^{x}}\]

Давайте теперь решать наше выражение:

\[{{{z}"}_{x}}={{\left({{3}^{x\sin y}} \right)}^{\prime }}_{x}={{3}^{x.\sin y}}\cdot \ln 3\cdot {{\left(x\cdot \sin y \right)}^{\prime }}_{x}=\]

Отдельно посчитаем такую конструкцию:

\[{{\left(x\cdot \sin y \right)}^{\prime }}_{x}={{{x}"}_{x}}\cdot \sin y+x{{\left(\sin y \right)}^{\prime }}_{x}=1\cdot \sin y+x\cdot 0=\sin y\]

Продолжаем решать исходное выражение:

\[={{3}^{x\sin y}}\cdot \ln 3\cdot \sin y\]

Это окончательный ответ частной переменной по $x$. Теперь посчитаем по $y$:

\[{{{z}"}_{y}}={{\left({{3}^{x\sin y}} \right)}^{\prime }}_{y}={{3}^{x\sin y}}\cdot \ln 3\cdot {{\left(x\sin y \right)}^{\prime }}_{y}=\]

Решим одно выражение отдельно:

\[{{\left(x\cdot \sin y \right)}^{\prime }}_{y}={{{x}"}_{y}}\cdot \sin y+x{{\left(\sin y \right)}^{\prime }}_{y}=0\cdot \sin y+x\cdot \cos y=x\cdot \cos y\]

Решаем до конца нашу конструкцию:

\[={{3}^{x\cdot \sin y}}\cdot \ln 3\cdot x\cos y\]

Задача № 2

На первый взгляд этот пример может показаться достаточно сложным, потому что здесь три переменных. На самом деле, это одна из самых простых задач в сегодняшнем видеоуроке.

Находим по $x$:

\[{{{t}"}_{x}}={{\left(x{{e}^{y}}+y{{e}^{z}} \right)}^{\prime }}_{x}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{x}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{x}=\]

\[={{\left(x \right)}^{\prime }}_{x}\cdot {{e}^{y}}+x\cdot {{\left({{e}^{y}} \right)}^{\prime }}_{x}=1\cdot {{e}^{y}}+x\cdot o={{e}^{y}}\]

Теперь разберемся с $y$:

\[{{{t}"}_{y}}={{\left(x\cdot {{e}^{y}}+y\cdot {{e}^{z}} \right)}^{\prime }}_{y}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{y}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{y}=\]

\[=x\cdot {{\left({{e}^{y}} \right)}^{\prime }}_{y}+{{e}^{z}}\cdot {{\left(y \right)}^{\prime }}_{y}=x\cdot {{e}^{y}}+{{e}^{z}}\]

Мы нашли ответ.

Теперь остается найти по $z$:

\[{{{t}"}_{z}}={{\left(x\cdot {{e}^{y}}+{{y}^{z}} \right)}^{\prime }}_{z}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{z}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{z}=0+y\cdot {{\left({{e}^{z}} \right)}^{\prime }}_{z}=y\cdot {{e}^{z}}\]

Мы посчитали третью производную, на чем решение второй задачи полностью завершено.

Нюансы решения

Как видите, ничего сложного в этих двух примерах нет. Единственное, в чем мы убедились, так это в том, что производная сложной функции применяется часто и в зависимости от того, какую частную производную мы считаем, мы получаем разные ответы.

В последней задаче нам было предложено разобраться с функцией сразу от трех переменных. Ничего страшного в этом нет, однако в самом конце мы убедились, что все они друг от друга существенно отличаются.

Ключевые моменты

Окончательные выводы из сегодняшнего видеоурока следующие:

  1. Частные производные считаются так же, как и обычные, при этом, чтобы считать частную производную по одной переменной, все остальные переменные, входящие в данную функцию, мы принимаем за константы.
  2. При работе с частными производными мы используем все те же стандартные формулы, что и с обычными производными: сумму, разность, производную произведения и частного и, разумеется, производную сложной функции.

Конечно, просмотра одного этого видеоурока недостаточно, чтобы полностью разобраться в этой теме, поэтому прямо сейчас на моем сайте именно к этому видео есть комплект задач, посвященных именно сегодняшней теме — заходите, скачивайте, решайте эти задачи и сверяйтесь с ответом. И после этого никаких проблем с частными производными ни на экзаменах, ни на самостоятельных работах у вас не будет. Конечно, это далеко не последний урок по высшей математике, поэтому заходите на наш сайт, добавляйтесь ВКонтакте, подписывайтесь на YouTube, ставьте лайки и оставайтесь с нами!

Вам также будет интересно:

Исторические факты в фильме «Иван Васильевич меняет профессию
Кто не знает эту весёлую комедию Леонида Гайдая? Таких среди россиян, пожалуй, нет. Мы...
Живая азбука, живые буквы в картинках, русский алфавит в картинках На что похожи буквы рисунок получили приз
В 1 классе после изучения всех букв алфавита детям предлагается выполнить проект "На что...
Строение и функции молекул ДНК и РНК
Мономерными звеньями которого являются нуклиатиды. Что такое ДНК? Вся информация о...
Из истории теоремы пифагора Краткое сообщение о теореме пифагора
Городская научно-практическая конференция «Старт в науку» Знаменитые теоремы (теорема...
Самые знаменитые русские в мире
Русские ученые изобрели телевизор, а русские режиссеры научили весь мир театру. Кто же из...