Строение и функции молекул ДНК и РНК

Из истории теоремы пифагора Краткое сообщение о теореме пифагора

Самые знаменитые русские в мире

Примерное расписание логопедических занятий

Презентация на тему: «Всё о Лондоне»

Урок географии "Австралия

Практическое руководство по магии

Этнический состав южной америки

Равноускоренное движение: формулы, примеры

Значение слова мальчиш-кибальчиш в литературной энциклопедии Кто написал сказку о мальчише кибальчише

Веселые герои мультфильма чаггингтон

Счетный материал «Математические кораблики Дидактические игры с математическим деревянным корабликам

Эрнан Кортес: Завоевание Мексики Фернандо кортес что открыл

Есенина Внеклассная работа по литературе

Княжества северо-восточной руси Коренными жителями Залесского края являлись угро-финские племена: мурома, меря, весь

Современная генетика. Генетика русских: современные исследования Современная генетика


?
Содержание
Введение………………………………………………………… …………………………
3
I. Предмет генетики………………………………………………………… ………..…..
5
II. Наследственность. Исследования Менделя………………………………….………
10
III. Изменчивость и влияние среды. Виды и значение мутаций……………………….
13
IV. Лечение и предупреждение некоторых наследственных болезней человека……..
19
Заключение…………………………………………………… ……………………………
21
Список используемой литературы…………………………………………………… ….
22

Введение
Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения полезных свойств возделываемых растений и выведения высокопродуктивных пород домашних животных, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения к другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.
Однако лишь в начале XX века ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе “задатки” того огромного множества признаков, из которых слагается каждый отдельный организм.
Генетика оформилась как наука после переоткрытия законов Менделя. Памятной датой в биологии стала весна 1953 года. Исследователи американец Д. Уотсон и англичанин Ф. Крик расшифровали «святая святых» наследственности - ее генетической код. Именно с той поры слово «ДНК» - дезоксирибонуклеиновая кислота стало известно не только узкому кругу ученых, но и каждому образованному человеку во всем мире. Бурный вековой период ее развития ознаменован в последние годы расшифровкой нуклеотидного состава «молекулы жизни» ДНК у десятков видов вирусов, бактерий, грибов и многоклеточных организмов.
Полным ходом идет секвенирование (установление порядка чередования нуклеотидов) ДНК хромосом важных культурных растений - риса, кукурузы, пшеницы. В начале 2001 года было торжественно возвещено о принципиальной расшифровке у человека всего генома - ДНК, входящей в состав всех 23 пар хромосом клеточного ядра. Эти биотехнологические достижения сравнивают с выходом в космос.
Дезоксирибонуклеиновая кислота, или ДНК, впервые была выделена из клеточных ядер. Поэтому ее и назвали нуклеиновой (греч. nucleus - ядро). ДНК состоит из цепочки нуклеотидов с четырьмя различными основаниями: аденином (А), гуанином (G), цитозином (С) и тимином (Т). ДНК почти всегда существует в виде двойной спирали, то есть она представляет собой две нуклеотидные цепи, составляющие пару. Вместе их удерживает так называемая комплементарность пар оснований. "Комплементарность" означает, что когда А и Т в двух цепях ДНК расположены друг против друга, между ними спонтанно образуется связь. Аналогично комплиментарную пару образуют G и С. В клетках человека содержится 46 хромосом. Длина генома человека (все ДНК в хромосомах) может достигать двух метров и состоит из трех миллиардов нуклеотидных пар. Ген - это единица наследственности. Он представляет собой часть молекулы ДНК и содержит закодированную информацию об аминокислотной последовательности одного белка или рибонуклеиновой кислоты (РНК).
Сообщение ученых о том, что им удалось расшифровать структуру этой большой молекулы, объединило в целое разрозненные до того результаты исследований в биохимии, микробиологии и генетике, проводящихся на протяжении полувека. В последние десятилетия человечество наблюдает за стремительным прогрессом генетики. Эта наука давно стала важнейшим достоянием человечества, к которому обращены надежды миллионов людей.
I. Предмет генетики
Подобно тому, что в физике элементарными единицами вещества являются атомы, в генетике элементарными дискретными единицами наследственности и изменчивости являются гены. Хромосома любого организма, будь то бактерия или человек, содержит длинную (от сотен тысяч до миллиардов пар нуклеотидов) непрерывную цепь ДНК, вдоль которой расположено множество генов. Установление количества генов, их точного местоположения на хромосоме и детальной внутренней структуры, включая знание полной нуклеотидной последовательности, - задача исключительной сложности и важности. Ученые успешно решают ее, применяя целый комплекс молекулярных, генетических, цитологических, иммуногенетических и других методов.
Важная особенность эукариотических генов – их прерывистость. Это значит, что область гена, кодирующая белок, состоит из нуклеотидных последовательностей двух типов. Одни – экзоны – участки ДНК, которые несут информацию о строении белка и входят в состав соответствующих РНК и белка. Другие – интроны, - не кодируют структуру белка и в состав зрелой молекулы и-РНК не входят, хотя и транскрибируются. Процесс вырезания интронов – «ненужных» участков молекулы РНК и сращивания экзонов при образовании и-РНК осуществляется специальными ферментами и носит название сплайсинг (сшивание, сращивание). Экзоны обычно соединяются вместе в том же порядке, в котором они располагаются в ДНК. Однако не абсолютно все гены эукариот прерывисты. Иначе говоря, у некоторых генов, подобно бактериальным, наблюдается полное соответствие нуклеотидной последовательности первичной структуре кодируемых ими белков.
Представители любого биологического вида воспроизводят подобные себе существа. Это свойство потомков быть похожими на своих предков называется наследственностью.
Несмотря на огромное влияние наследственности в формировании фенотипа живого организма, родственные особи в большей или меньшей степени отличаются от своих родителей. Это свойство потомков называется изменчивостью. Изучением явлений наследственности и изменчивости занимается наука генетика. Таким образом, генетика - наука о закономерностях наследственности и изменчивости. По современным представлениям, наследственность - это свойство живых организмов передавать из поколения в поколение особенности морфологии, физиологии, биохимии и индивидуального развития в определенных условиях среды. Изменчивость - свойство, противоположное наследственности, - это способность дочерних организмов отличаться от родителей морфологическими, физиологическими, биологическими особенностями и отклонениями в индивидуальном развитии. Наследственность и изменчивость реализуются в процессе наследования, т.е. при передаче генетической информации от родителей к потомкам через половые клетки (при половом размножении) либо через соматические клетки (при бесполом размножении).
Генетика как наука решает следующие основные задачи:
· изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и ее материальные носители;
· анализирует способы передачи наследственной информации от одного поколения организмов к другому;
· выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на их условий среды обитания;
· изучает закономерности и механизмы изменчивости и ее роль в приспособительных реакциях и в эволюционном процессе;
· изыскивает способы исправления поврежденной генетической информации.
Для решения этих задач используются разные методы исследования.
Метод гибридологического анализа был разработан Грегором Менделем. Этот метод позволяет выявить закономерности наследования отдельных признаков при половом размножении организмов. Сущность его заключается в следующем: анализ наследования проводится по отдельным независимым признака; прослеживается передача этих признаков в ряду поколений; проводится точный количественный учет наследования каждого альтернативного признака и характер потомства каждого гибрида в отдельности.
Цитогенетический метод позволяет изучать кариотип (набор хромосом) клеток организма и выявлять геномные и хромосомные мутации.
Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования (например, доминантный, рецессивный) того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях. Этот метод широко используется в селекции и работе медико-генетических консультаций.
Близнецовый метод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.
Биохимические методы исследования основаны на изучении активности ферментов и химического состава клеток, которые определяются наследственностью. С помощью этих методов можно выявить генные мутации и гетерозиготных носителей рецессивных генов.
Популяционно-статистический метод позволяет рассчитывать частоту встречаемости генов и генотипов в популяциях.
Введем основные понятия генетики. При изучении закономерностей наследования обычно скрещивают особи, отличающиеся друг от друга альтернативными (взаимоисключающими) признаками (например, желтый и зеленый цвет, гладкая и морщинистая поверхность горошин). Гены, определяющие развитие альтернативных признаков, называются аллельными. Они располагаются в одинаковых локусах (местах) гомологичных (парных) хромосом. Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называют доминантным, а не проявляющийся (подавленный) называют рецессивными. Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены (два доминантных или два рецессивных), то такой организм называется гомозиготным. Если же в гомологичных хромосомах локализованы разные гены одной аллельной пары, то такой организм принято называть гетерозиготным по данному признаку. Он образует два типа гамет и при скрещивании с таким же по генотипу организмом дает расщепление.
Совокупность всех генов организма называется генотипом. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов.
Каждый ген испытывает на себе воздействие других генов генотипа и сам оказывает на них влияние, поэтому один и тот же ген в разных генотипах может проявляться по-разному.
Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определенного генотипа в результате взаимодействия с условиями внешней среды. Организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования. Отдельный признак называется феном. К фенотипическим признакам относятся не только внешние признаки (цвет глаз, волос, форма носа, окраска цветков и тому подобное), но и анатомические (объем желудка, строение печени и тому подобное), биохимические (концентрация глюкозы и мочевины в сыворотке крови и так далее) и другие.

II. Наследственность. Исследования Менделя
Важный шаг в познании закономерностей наследственности сделал выдающийся чешский исследователь Грегор Мендель. Он выявил важнейшие законы наследственности и показал, что признаки организмов определяются дискретными (отдельными) наследственными факторами. Работа “Опыты над растительными гибридами” отличалась глубиной и математической точностью, однако она была опубликована в малоизвестных трудах Брюннскго общества естествоиспытателей и оставалась неизвестной почти 35 лет - с 1865 до 1900 г. Именно в 1900г. Г. де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга переоткрыли законы Менделя и признали его приоритет. Переоткрытие законов Менделя вызвало стремительное развитие науки о наследственности и изменчивости организмов - генетики.
Успехи, достигнутые Менделем, частично обусловлены удачным выбором объекта для экспериментов - гороха огородного (Pisum sativum). Мендель удостоверился, что по сравнению с другими этот вид обладает следующими преимуществами:
1) имеется много сортов, четко различающихся по ряду признаков;
2) растения легко выращивать;
3) репродуктивные органы полностью прикрыты лепестками, так что растение обычно самоопыляется; поэтому его сорта размножаются в чистоте, то есть их признаки из поколения в поколение остаются неизменными;
4) возможно искусственное скрещивание сортов, и оно дает вполне плодовитые гибриды.
Из 34 сортов гороха Мендель отобрал 22 сорта, обладающие четко выраженными различиями по ряду признаков, и использовал их в своих опытах со скрещиванием. Менделя интересовали семь главных признаков: высота стебля, форма семян, окраска семян, форма и окраска плодов, расположение и окраска цветков. Следует отметить, что в выборе экспериментального объекта Менделю кое в чем просто повезло: в наследовании отобранных им признаков не было ряда более сложных особенностей, открытых позднее, таких как неполное доминирование, зависимость более чем от одной пары генов, сцепление генов. Отчасти этим фактом объясняется то, что и до Менделя многие ученые проводили подобные эксперименты на растениях, но ни один из них не получил таких точных и подробных данных; кроме того они не смогли объяснить свои результаты с точки зрения механизма наследственности.
Для своих первых экспериментов Мендель выбирал растения двух сортов, четко различавшихся по какому-либо признаку, например, по расположению цветков: цветки могут быть распределены по всему стеблю (пазушные) или находиться на конце стебля (верхушечные). Растения, различающиеся по одной паре альтернативных признаков, Мендель выращивал на протяжении ряда поколений. Во всех случаях анализ результатов показал, что отношение доминантных признаков к рецессивным в поколении составляло примерно 3:1.
Приведенный выше пример типичен для всех экспериментов Менделя, в которых изучалось наследование одного признака (моногибридные скрещивания).
На основании этих и аналогичных результатов Мендель сделал выводы:
1. Поскольку исходные родительские сорта размножались в чистоте (не расщепляясь), у сорта с пазушными цветками должно быть два «пазушных» фактора, а у сорта с верхушечными цветками – два «верхушечных» фактора.
2. Растения F1 содержали по одному фактору, полученному от каждого из родительских растений через гаметы.
3. Эти факторы в F1 не сливаются, а сохраняют свою индивидуальность.
4. «Пазушный» фактор доминирует над «верхушечным» фактором, который рецессивен. Разделение пары родительских факторов при образовании гамет (так что в каждую гамету попадает лишь один из них) известно под названием первого закона Менделя или закона расщепления. Согласно этому закону, признаки данного организма детерминируются парами внутренних факторов. В одной гамете может быть представлен только один из каждой пары таких факторов.
Теперь мы знаем, что эти факторы, детерминирующие такие признаки, как расположение цветка, соответствуют участкам хромосомы, называемым генами.
Описанные выше эксперименты, проводившиеся Менделем при изучении наследования одной пары альтернативных признаков, служат примером моногибридного скрещивания.

III. Изменчивость и влияние среды. Виды и значение мутаций.
Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду. Поразительное морфологическое разнообразие особей в пределах любого вида привлекло внимание Дарвина и Уоллеса во время их путешествий. Закономерный, предсказуемый характер передачи таких различий по наследству послужил основой для исследований Менделя. Дарвин установил, что определенные признаки могут развиваться в результате отбора, тогда как Мендель объяснил механизм, обеспечивающий передачу из поколения в поколение признаков, по которым ведется отбор.
Мендель описал, каким образом наследственные факторы определяют генотип организма, который в процессе развития проявляется в структурных, физиологических и биохимических особенностях фенотипа. Если фенотипическое проявление любого признака обусловлено в конечном счете генами, контролирующими этот признак, то на степень развития определенных признаков может оказывать влияние среда.
Главный фактор, детерминирующий любой фенотипический признак, - это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха с длинным стеблем обычно достигал высоты 180 см. Однако для этого ему необходимы были соответствующие условия – освещение, снабжение водой и хорошая почва. При отсутствии оптимальных условий (при наличии лимитирующих факторов) ген высокого стебля не мог в полной мере проявить свое действие. Эффект взаимодействия генотипа и факторов среды продемонстрировал датский генетик Иоганнсен.
В ряде экспериментов на карликовой фасоли он выбирал из каждого поколения самоопылявшихся растений самые тяжелые и самые легкие семена и высаживал их для получения следующего поколения. Повторяя эти эксперименты на протяжении нескольких лет, он обнаружил, что в пределах «тяжелой» или «легкой» селекционной линии семена мало отличались по среднему весу, тогда как средний вес семян из разных линий сильно различался. Это позволяет считать, что на фенотипическое проявление признака оказывает влияние как наследственность, так и среда. На основании этих результатов можно определить непрерывную фенотипическую изменчивость как «кумулятивный эффект варьирующих факторов среды, воздействующих на вариабельный генотип». Кроме того, эти результаты показывают, что степень наследуемости данного признака определяется в первую очередь генотипом. Что касается развития таких чисто человеческих качеств, как индивидуальность, темперамент и интеллект, то, судя по имеющимся данным, они зависят как от наследственных, так и от средовых факторов, которые, взаимодействуя в различной степени у различных индивидуумов, создают фенотипические различия между индивидуумами. Мы пока еще не располагаем данными, которые твердо указывали бы на то, что влияние каких-то из этих факторов всегда преобладает, однако среда никогда не может вывести фенотип за пределы, детерминированные генотипом.
Необходимо ясно себе представлять, что взаимодействие между дискретной и непрерывной изменчивостью и средой делает возможным существование двух организмов с идентичным фенотипом.

Механизм репликации ДНК при митозе столь близок к совершенству, что возможности генетической изменчивости у организмов с бесполым размножением очень малы. Поэтому любая видимая изменчивость у таких организмов обусловлена воздействиями внешней среды. Что же касается организмов, размножающихся половым путем, то у них есть широкие возможности для возникновения генетических различий. Практически неограниченными источниками генетической изменчивости служат два процесса, происходящие во время мейоза:
1. Реципкорный обмен между хроматидами гомологичных хромосом, который может происходить в профазе 1 мейоза. Он создает новые группы сцепления, т.е. служит важным источником генетической рекомбинации аллелей.
2. Ориентация пар гомологичных хромосом (бивалентов) в экваториальной плоскости веретена в метафазе I мейоза определяет направление, в котором каждый член пары будет перемещаться в анафазе I. Эта операция носит случайный характер. Во время метафазы II пары хроматид опять-таки ориентируются случайным образом, и этим определяется, к какому из двух противоположных полюсов направится та или иная хромосома во время анафазыII. Случайная ориентация и последующее независимое расхождение (сегрегация) хромосом делают возможным большое число различных хромосомных комбинаций в гаметах; число это можно подсчитать.

Третий источник изменчивости при половом размножении – это то, что слияние мужских и женских гамет, приводящее к объединению двух гаплоидных наборов хромосом в диплоидном ядре зиготы, происходит совершенно случайным образом (во всяком случае, в теории); любая мужская гамета потенциально способна слиться с любой женской гаметой.
Эти три источника генетической изменчивости и обеспечивают постоянную «перетасовку» генов, лежащую в основе все время происходящих генетических изменений. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего приспособлены к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции. Однако эти источники изменчивости не порождают крупных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Мутацией называют изменение количества или структуры ДНК данного организма. Мутация приводит к изменению генотипа, которое может быть унаследовано клетками, происходящими от мутантной клетки в результате митоза или мейоза. Мутирование может вызывать изменения каких-либо признаков в популяции. Мутации, возникшие в половых клетках, передаются следующим поколениям организмов, тогда как мутации, возникшие в соматических клетках, наследуются только дочерними клетками, образовавшимися путем митоза и такие мутации называют соматическими.

Мутации, возникающие в результате изменения числа или макроструктуры хромосом, известны под названием хромосомных мутаций или хромосомных аберраций (перестроек). Иногда хромосомы так сильно изменяются, что это можно увидеть под микроскопом. Но термин «мутация» используют главным образом для обозначения изменения структуры ДНК в одном локусе, когда происходит так называемая генная, или точечная, мутация.
Представление о мутации как о причине внезапного появления нового признака было впервые выдвинуто в 1901 г. голландским ботаником Гуго де Фризом, изучавшим наследственность у энотеры Oenothera lamarckiana. Спустя 9 лет Т.Морган начал изучать мутации у дрозофилы, и вскоре при участии генетиков всего мира у нее было идентифицировано более 500 мутаций.
Хромосомные и генные мутации оказывают разнообразные воздействия на организм. Во многих случаях эти мутации летальны, так как нарушают развитие; у человека, например, около 20 % беременностей заканчиваются естественным выкидышем в сроки до 12 недель, и в половине таких случаев можно обнаружить хромосомные аномалии. В результате некоторых хромосомных мутаций определенные гены могут оказаться вместе, и их общий эффект может привести к появлению какого-либо «благоприятного» признака. Кроме того, сближение некоторых генов друг с другом делает менее вероятным их разделение в результате кроссинговера, а в случае благоприятных генов это создает преимущество.
Генная мутация может привести к тому. Что в определенном локусе окажется несколько аллелей. Это увеличивает как гетерозиготность данной популяции, так и ее генофонд, и ведет к усилению внутрипопуляционной изменчивости.
Перетасовка генов как результат кроссинговера, независимого распределения, случайного оплодотворения и мутаций может повысить непрерывную изменчивость, но ее эволюционная роль часто оказывается преходящей, так как возникающие при этом изменения могут быстро сгладиться вследствие «усреднения». Что же касается генных мутаций, то некоторые из них увеличивают дискретную изменчивость, и это может оказать на популяцию более глубокое влияние. Большинство генных мутаций рецессивны по отношению к «нормальному» аллелю, который, успешно выдержав отбор на протяжении многих поколений, достиг генетического равновесия с остальным генотипом. Будучи рецессивными, мутантные аллели могут оставаться в популяции в течение многих поколений, пока им не удастся встретиться, т.е. оказаться в гомозиготном состоянии и проявиться в фенотипе. Время от времени могут возникать и доминантные мутантные аллели, которые немедленно дают фенотипический эффект.

IV. Лечение и предупреждение некоторых наследственных болезней человека
Повышенный интерес медицинской генетики к наследственным заболеваниям объясняется тем, что во многих случаях знание биохимических механизмов развития позволяет облегчить страдания больного. Больному вводят не синтезирующиеся в организме ферменты. Так, например, заболевание сахарным диабетом характеризуется повышением концентрации сахара в крови вследствие недостаточной (или полного отсутствия) выработки в организме гормона инсулин поджелудочной железой. Это заболевание вызывается рецессивным геном. Еще в 19 веке это заболевание практически неизбежно приводило к смерти больного. Получение инсулина из поджелудочных желез некоторых домашних животных спасло жизни многим людям. Современные методы генной инженерии позволили получать инсулин гораздо более высокого качества, абсолютно идентичный человеческому инсулину в масштабах, достаточных для обеспечения каждого больного инсулином и с намного меньшими затратами.
Сейчас известны сотни заболеваний, в которых механизмы биохимических нарушений изучены достаточно подробно. В некоторых случаях современные методы микроанализов позволяют обнаружить такие биохимические нарушения даже в отдельных клетках, а это, в свою очередь, позволяет ставить диагноз о наличии подобных заболеваний у еще не родившегося ребенка по отдельным клеткам в околоплодной жидкости.
Знание генетики человека позволяет прогнозировать вероятность рождения детей, страдающих наследственными недугами, когда один или оба супругов больны или оба родителя здоровы, но наследственное заболевание встречалось у предков супругов. В ряде случаев имеется возможность прогноза вероятности рождения второго здорового ребенка, если первый был поражен наследственным заболеванием.
По мере повышения биологической и особенно генетической образованности широких масс населения, супружеские пары, еще не имеющие детей, все чаще обращаются к врачам-генетикам с вопросом о риске иметь ребенка, пораженного наследственной аномалией.
Медико-генетические консультации сейчас открыты во многих областях и краевых центрах нашей страны. Широкое использование медико-генетических консультаций сыграет немаловажную роль в снижении частоты наследственных недугов и избавит многие семьи от несчастья иметь нездоровых детей.
В настоящее время во многих странах широко применяется метод амниоцентеза, позволяющий анализировать клетки эмбриона из околоплодной жидкости. Благодаря этому методу женщина на раннем этапе беременности может получить важную информацию о возможных хромосомных или генных мутациях плода и избежать рождения больного ребенка.

Заключение
Итак, в работе были изложены ключевые понятия генетики, ее методы и достижения последних лет. Генетика – очень молодая наука, но темпы ее развития столь высоки, что в настоящий момент она занимает важнейшее место в системе современных наук, и, пожалуй, важнейшие достижения последнего десятилетия ушедшего века связаны именно с генетикой. Сейчас, в начале XXI века, перед человечеством открываются перспективы, завораживающие воображение. Смогут ли ученые в ближайшее время реализовать гигантский потенциал, заложенный в генетике? Получит ли человечество долгожданное избавление от наследственных болезней, сможет ли человек продлить свою слишком короткую жизнь, обрести бессмертие? В настоящее время у нас есть все основания надеяться на это.
По прогнозам генетиков, уже к концу пер­вого десятилетия XXI века на смену привычным привив­кам придут генетические вакцины, и медики получат возможность навсегда по­кончить с такими неизлечи­мыми болезнями, как рак, болезнь Альцгеймера, диа­бет, астма. Это направление уже имеет свое название - генотерапия. Она родилась всего лишь пять лет назад. Но вскоре может утратить актуальность благодаря генодиагностике. По некоторым прогнозам примерно в 2020 году на свет будут появляться исключи­тельно здоровые дети: уже на эмбриональной стадии раз­вития плода генетики смогут исправлять наследственные неполадки. Ученые прогнозируют, что в 2050 году будут попытки по усовершенствованию человеческого вида. К этому времени они научат­ся проектировать людей определенной специализации: математиков, физиков, художников, поэтов, а может быть, и гениев.
А уже ближе к концу века, наконец, исполнится мечта человека: процессом старения, несом­ненно, можно бу­дет управлять, а там недалеко и до бессмертия.
Список используемой литературы:
1. Н.Гринн, Биология, Москва, «МИР», 1993.
2. Ф.Кибернштерн, Гены и генетика. Москва, «Параграф», 1995.
3. Р.Г. Заяц и др., Биология для поступающих в вузы. МН.: Высшая школа, 1999
4.
5. Общая биология. Учебник для 10-11 классов школ с углубленным изучением биологии. Под редакцией профессора А.О.Ручинского. Москва, «Просвещение» 1993.
6. Владимир Засельский, Игорь Лалаянц - "Огонек", № 10, 10 марта 1997
7. Nature. 1999. С.309-312 (Великобритания).
8.

Н.Гринн, Биология, Москва, «МИР», 1993.
Ф.Кибернштерн, Гены и генетика. Москва, «Параграф», 1995
Р.Г. Заяц и др., Биология для поступающих в вузы. МН.: Высшая школа, 1999

Наследственность и гены, «Наука и жизнь», март 1999
М.М.Тихомирова, Генетический анализ: учебное пособие. – Л.: Издательство Ленинградского университета, 1990.
М.М.Тихомирова, Генетический анализ: учебное пособие. – Л.: Издательство Ленинградского университета, 1990.

Общая биология. Учебник для 10-11 классов школ с углубленным изучением биологии. Под редакцией профессора А.О.Ручинского. Москва, «Просвещение» 1993.

Nature. 1999. С.309-312 (Великобритания)
Наследственность и гены, «Наука и жизнь», март 1999

Если век XIX по праву вошел в историю мировой цивилизации как Век Физики, то стремительно завершающемуся веку XX-му, в котором нам счастливилось жить, по всей вероятности, уготовано место Века Биологии, а может быть, и Века Генетики.

Середина и вторая половина XX столетия ознаменовались значительным уменьшением частоты и даже полной ликвидацией ряда инфекционных заболеваний, снижением младенческой смертности, увеличением средней продолжительности жизни. В развитых странах мира центр внимания служб здравоохранения был перемещен на борьбу с хронической патологией человека, болезнями сердечно-сосудистой системы, онкологическими заболеваниями.

Стало очевидным, что прогресс в области медицинской науки и практики тесно связан с развитием общей и медицинской генетики, биотехнологии. Потрясающие достижения генетики позволили выйти на молекулярный уровень познания генетических структур организма, и наследования, вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Получила развитие клиническая генетика - одно из важнейших направлений современной медицины, приобретающих реальное профилактическое значение. Выяснилось, что множество хронических болезней человека есть проявление генетического груза, риск их развития может быть предсказан задолго до рождения ребенка на свет, и уже появились практические возможности снизить давление этого груза.

В феврале 2001 года два наиболее авторитетных научных журнала в мире "Nature" и "Science" опубликовали отчеты двух научных групп, расшифровавших геном человека. В журнале "Nature" от 12 февраля 2001 года приведены подробные данные о структуре генома человека, полученные международным консорциумом под руководством Френсиса Коллинза, в котором работали ученые Англии, Германии, Китая, США, Франции и Японии в рамках международной программы "Геном человека" с привлечением государственного финансирования. Эта группа выделила в ДНК особые маркеры, легко распознаваемые участки, и по ним определила нуклеотидные последовательности генома человека. В журнале "Science" от 16 февраля 2001 года ученые частной фирмы "Celera Genomics" под руководством Крэга Вентера опубликовали результаты расшифровки генома человека, полученные с применением другой стратегии исследований, в основе которой лежит анализ последовательностей нуклеотидных оснований в коротких участках ДНК человека. Таким образом, при расшифровке генома человека были использованы два научных подхода, каждый из которых имеет свои преимущества и недостатки. Важно отметить, что получены близко совпадающие результаты, которые взаимно дополняют друг друга и свидетельствуют об их достоверности. Вопрос о точности изучения последовательностей ДНК особенно важен в отношении генома человека. В нашем геноме существует большое число повторов нуклеотидов. Кроме них в хромосомах есть теломеры, центромеры и зоны гетерохроматина, где секвенирование затруднено и они пока исключены из исследований. Предварительный анализ опубликованных материалов по расшифровке генома человека позволяет отметить несколько особенностей. Количество генов у человека оказалось существенно меньше, чем предполагали ученые несколько лет назад, называя величины 80-100 000 генов. По данным, опубликованным в журнале "Nature", у человека около 32 000 генов, тогда как в геноме мухи дрозофил их 13 000, круглого червя нематоды - 19100, а растения арабидопсиса - 25 000 генов. При сопоставлении этих величин следует иметь в виду, что расчетное число генов человека получено методами компьютерной геномики и не у всех генов выявлены конечные продукты. Кроме того, в геноме человека действует принцип "один ген - много белков", то есть многие гены кодируют семейство родственных, но существенно различающихся белков. Следует также иметь в виду процесс посттрансляционной модификации белков за счет различных химических групп - ацетильных, гликозильных, метильных, фосфатных и других. Поскольку таких групп в молекуле белка много, то и разнообразие может быть практически безграничным. Другой особенностью генома человека является наличие в нем генов различных вирусов и бактерий, которые постепенно накапливались в процессе многомиллионной эволюции человека. По образному выражению академика Л.Л. Киселева, "...геном человека представляет собой молекулярное кладбище, на котором покоятся вирусные и бактериальные гены, большинство из них молчит и не функционирует".

Согласно недавним оценкам Международной службы по внедрению прикладной биотехнологии в сельском хозяйстве посевные "генетические" площади и производство генных зерновых продуктов с каждым годом увеличиваются на 25-30%.

Но до сих пор страны - участницы ЕС не определились с перспективами генетических технологий в сельском хозяйстве и пищевой промышленности. А соблазн-то велик: по мнению французского микробиолога Жана-Поля Прюнье, "с помощью манипуляции молекулами и прививок одному растению клеток другого, в том числе искусственно выращенного, можно получать самые разнообразные плодоовощи, злаковые и корнеплоды. Причем высокоурожайные, почти невосприимчивые к болезням, вредителям, к недостатку воды и света или засухе".Например, во Франции ныне потребляется около 50 наименований генетических продуктов из генной кукурузы и 10 - из генетических злаков. Причем последние уже начинают вытеснять там, а также во французских заморских территориях традиционные рапс, хлопчатник, кукурузу, сою, кормовые травы и даже виноградники.

Определение отцовства методом ДНК-диагностики.

Носителем наследственной информации человека является ДНК. У каждого человека она располагается в 46 парных хромосом. 23 хромосомы человек получает от матери, остальные 23 - от отца. Нумерация каждой пары производится в соответствии с международной классификацией, при этом различия между парами хромосом выявляются визуально с помощью микроскопа; хромосомы каждой пары кроме половых хромосом Х и Y считаются одинаковыми.

Однако, современные молекулярно-генетические методы позволяют индивидуализировать каждую хромосому пары. Это и позволяет проводить определение отцовства на уровне ДНК.

При установлении отцовства исследуются индивидуальные различия ДНК определенных парных хромосом. Сначала выясняется, какую хромосому из пары ребенок получил от матери, затем производится сравнение оставшейся хромосомы с хромосомами предполагаемого отца.

Дактилоскопическая идентификация человека.

Целью использования новых методов в судебно-медицинской экспертизе вещественных доказательств является повышение идентификационных возможностей. Значительная перспектива в этом направлении появилась прежде всего за счет использования достижений молекулярной генетики. Дактилоскопическая идентификация человека один из наиболее эффективных методов идентификации. В современной криминалис-тике и судебной медицине он заслуженно считается самым разрабо-танным и надежным методом. Большая часть принципов криминали-стической теории идентификации в целом, и теории идентификации личности человека в частности, сформирована на основе положений дактилоскопической идентификации. Новые методы установления иден-тичности, появляющиеся в науке и практике, стараются сравнить с дактилоскопией по надежности и эффективности. Например, внедряемый в настоящее время в широкую экспертную практику метод генотипоскопии поначалу даже назвали геномной дактилоскопией, подчеркнув большие возможности генотипоскопического метода в идентификации личности человека путем сравнения его возможностей с эталонным криминалистическим методом. Поэтому, изложение основ дактилоско-пической идентификации в данной главе учебника будет полезно.

На ладонных поверхностях кистей рук и на аналогичных поверх-ностях стоп ног имеются узоры, образованные валиками и бороздка-ми, называемые папиллярными узорами (papilla -- сосочек, папиллярный -- сосочковый). Их наличие обусловлено строением базового (сосочкового) слоя кожи, который еще называют дермальным слоем (дермой). Наружный слой кожи -- эпидермис, отражает строение ба-зового дермального слоя.

Папиллярные узоры возникают у плода человека в момент фор-мирования кожных покровов и остаются неизменными до смерти че-ловека. Разрушаются они после гибели человека вместе с кожей, что чаще всего происходит через значительный период времени после смерти. Папиллярные узоры полностью восстанавливаются в перво-начальном виде после поверхностных повреждений кожи. После глу-боких повреждений остаются шрамы, которые имеют индивидуальный характер.

Строение папиллярных узоров строго индивидуально. Более чем столетними наблюдениями доказано, что папиллярные узоры не повторяются у разных людей. И даже сиамские близнецы, тела кото-рых в той или иной степени соединены между собой, имеют различаю-щиеся папиллярные узоры.

Указанные свойства позволяют эффективно использовать папил-лярные узоры для идентификации людей.

Наряду с тем, что папиллярные узоры строго индивидуальны, они имеют и общие черты, что позволяет их классифицировать.

В практических целях идентификации человека в большинстве слу-чаев используются папиллярные узоры концевых фаланг пальцев рук.

Рассмотрим строение папиллярных узоров. Все папиллярные узоры делят на три основных типа: петлевые (частота встречаемости при-мерно 65%); завитковые (30%); дуговые (5%). Кроме того, выделяют группы: переходных типов узоров, например между петле-вым и завитковым, между дуговым и петлевым; атипичных узоров; узоров, тип которых не определяется в силу каких-либо причин.

Суть дактилоскопического идентификационного исследования со-стоит в том, что эксперт производит сравнительное исследование двух отображений папиллярных узоров. Происхождение одного из ко-торых от конкретного человека (А) известно, а происхождение второго папиллярного узора (X) неизвестно или вызывает сомнение. Папиллярные узоры сравниваются вначале по общим признакам, таким как тип и вид узора. Затем анализируются детали строения, при этом учитывается наличие деталей в сравниваемых отображениях и их взаиморасположение. При совпадении всех обнаруженных деталей и отсутствии различий идентичность узоров считается установленной. При обнаружении хотя бы одного достоверно установленного разли-чия папиллярные узоры признаются неидентичными.

Если брать во внимание только количество совпадающих точек, то 17 достаточно для того, чтобы выделить одного человека из всего населения земного шара (расчеты произведены одним из основопо-ложников современной дактилоскопии). Но при исследовании учиты-вается не только количество точек, но их расположение и качество. Поэтому, в отдельных случаях можно осуществить идентификацию при наличии всего 6-7 деталей строения папиллярного узора. Если же использовать и микроскопические признаки, такие как строение краев и концов линий, строение и расположение пор, то вывод может быть сделан по еще меньшему количеству точек узора.

В каких же основных ситуациях может быть проведена дактило-скопическая идентификация?

Одним из основных условий для осуществления дактилоскопи-ческой идентификации является наличие отпечатков пальцев, полу-ченных от известного человека (от А). В настоящее время у нас в стране официально имеется право получать и хранить только отпе-чатки пальцев преступников. При необходимости отпечатки пальцев могут быть получены и у других граждан.

Аналогичные идентификационные исследования могут быть про-ведены не только по отображениям узоров пальцев рук, но и по отпе-чаткам ладоней и стоп ног. В некоторых теплых странах для регист-рации преступников используют отпечатки стоп, так как их часто об-наруживают на местах происшествий. А в США, например, отпечатки папиллярных узоров стоп получают у младенцев для возможной в дальнейшем идентификации.

В развитии генетики можно выделить 3 этапа: 1. (с 1900 по 1925 г.) – этап классической генетики. В этот период были переоткрыты и подтверждены на многих видах растений и животных законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган). 2. (с1926 по 1953) – этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.). в это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики. 3 . (начинается с 1953 г.) – этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана). Большой вклад в развитие генетики внесли отечественные учёные. Научные генетические школы созданы Вавиловым и др. Получили искусственным путём мутации – Филиппов. Вавилов сформулировал закон гомологических рядов наследственной изменчивости. Карпеченко предложил метод преодоления бесплодия у некоторых гибридов. Четвериков – основатель учения о генетике популяций. Серебровский – показал сложное строение и дробимость гена. Основные научные направления развития современной генетики человека: Цитогенетика изучает хромосомы человека, их структурно-функциональной организации, картирование, разрабатывает методы хромосомного анализа. Достижение цитогенетики застососовуються для диагностики хромосомных болезней человека. Популяционная генетика исследует генетическую структуру человеческих популяций, частоту аллелей отдельных генов (нормальных и патологических) в популяциях людей, прогнозирует и оценивает генетические последствия загрязнения окружающей среды, влияние антропогенных факторов среды на биологические процессы, протекающие в человеческих популяциях (мутационный процесс). Эти исследования позволяют прогнозировать частоту некоторых наследственных болезней в поколениях и планировать профилактические мероприятия. Биохимическая генетика изучает биохимическими методами пути реализации генетической информации от гена к признаку. С помощью биохимических методов разработаны экспресс-методы диагностики ряда наследственных болезней, в том числе методы пренатальной (дородовой) диагностики. Разработка системы защиты генофонда людей от ионизирующей радиации - одна из основных задач радиационной генетики. Иммунологическая генетика (иммуногенетика) изучает генетическую обусловленность иммунологических признаков организма, иммунных реакций. Фармакологическое генетика (фармакогенетика) исследует генетическую обусловленность реакций отдельных людей на лекарственные средства и действие последних на наследственный аппарат.

Моногибридное скрещивание. Первый закон Менделя. В опытах Менделя при скрещивании сортов гороха, которые имели желтые и зеленые семена, все потомство (т.е. гибриды первого поколения) оказалось с желтым семенами. При этом не имело значения, из какого именно семена (желтого или зеленого) выросли материнские (отцовские) растения. Итак, оба родителя в равной степени способны передавать свои признаки потомству. Аналогичные результаты были обнаружены и в опытах, в которых во внимание брались другие признаки. Так, при скрещивании растений с гладкими и морщинистым семенами все потомство имело гладкие семена. При скрещивании растений с пурпурными и белыми цветками у всех гибридов оказались лишь пурпурные лепестки цветков и т. д. Обнаруженная закономерность получила название первый закон Менделя, или закон единообразия гибридов первого поколения. Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии - гены) Г. Мендель предложил обозначать буквами латинского алфавита. Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель - большой, а рецессивный - маленькой. Второй закон Менделя .

При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т.е. возникает расщепление, которое происходит в определенных отношениях. Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми. В опыте, в котором учитывался цвет семян, с 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых, а с 7324 семян, в отношении которых учитывалась форма семени, было получено 5474 гладких и 1850 морщинистых. Исходя из полученных результатов, Мендель пришел к выводу, что во втором поколении 75% особей имеют доминантное состояние признака, а 25% - рецессивное (расщепление 3:1). Эта закономерность получила название второго закона Менделя, или закона расщепления. Согласно этому закону и используя современную терминологию, можно сделать следующие выводы:

а) аллели гена, находясь в гетерозиготном состоянии, не изменяют структуру друг друга; б) при созревании гамет у гибридов образуется примерно одинаковое число гамет с доминантными и рецессивными аллелями;

в) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются. При скрещивании двух гетерозигот (Аа), в каждой из которых образуется два типа гамет (половина с доминантными аллелями - А, половина - с рецессивными - а), необходимо ожидать четыре возможных сочетания. Яйцеклетка с аллелью А может быть оплодотворена с одинаковой долей вероятности как сперматозоидом с аллелью А, так и сперматозоидом с аллелью а; и яйцеклетка с аллелью а - сперматозоидом или с аллелью А, или аллелью а. В резульатате получаются зиготы АА, Аа, Аа, аа или АА, 2Аа, аа. По внешнему виду (фенотипу) особи АА и Аа не отличаются, поэтому расщепление выходит в соотношении 3:1. По генотипу особи распределяются в соотношении 1АА:2Аа:аа. Понятно, что если от каждой группы особей второго поколения получать потомство только самоопылением, то первая (АА) и последняя (аа) группы (они гомозиготные) будут давать только однообразное потомство (без расщепления), а гетерозиготные (Аа) формы будут давать расщепление в соотношении 3:1. Таким образом, второй закон Менделя, или закон расщепления, формулируется так: при скрещивании двух гибридов первого поколения, которые анализируются по одной альтернативной паре состояний признака, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу в соотношении 1:2:1. Третий закон Менделя, или закон независимого наследования признаков. Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (ааbb) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Ааbb) и зеленые гладкие (ааВb), которые не встречались в исходных формах. Из этого наблюдения Мендель сделал вывод, что расщепление по каждой признаку происходит независимо от второго признака. В этом примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов. Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признаках, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположенные в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительский особей. Для записи скрещиваний нередко используют специальные решетки, которые предложил английский генетик Пеннет (решетка Пеннета). Ими удобно пользоваться при анализе полигибридних скрещиваний. Принцип построения решетки состоит в том, что сверху по горизонтали записывают гаметы отцовской особи, слева по вертикали - гаметы материнской особи, в местах пересечения - вероятные генотипы потомства

Какова генетика современных русских? Вопросы об этом не оставляют умы ученых всего мира. Принято считать русских славянами, поэтому в первую очередь рассмотрим именно генетические особенности славян. Впрочем, даже такое ограничение темы оставляет большой простор для исследований - есть несколько ветвей славян, да и сам подход к определению, кого именно понимать под славянами, разнится.

О ком идет речь?

Обычно исследования генетики русских, в первую очередь - славян, начинаются с попытки определить, что это за группа лиц. Если уточнить у специализирующегося на языках ученого, он без запинки ответит, что есть несколько языковых групп, и одна из них - славянская. Следовательно, все народы, использующие языки этой группы для коммуникации с давних пор, могут называться славянами. Для них такой язык - родной.

Некоторую сложность в определении славян, а значит, для современных исследований генетики русских, создает сходство народностей, использующих один язык для общения. Речь идет не только об антропологических признаках, но и об особенностях культуры. Это позволяет расширить лингвистический термин и причислить к славянам несколько большее разнообразие сообществ.

Разделение и объединение

Некоторые обыватели считают, будто бы у русских плохая генетика. Объясняют такую позицию самыми разными причинами - от исторических предпосылок до давно прижившихся в обществе дурных привычек. Ученые не поддерживают такой стереотип. Говорящие на славянских языках народности и все живущие поблизости с ними сообщества имеют тесную генетическую связь. В частности, именно по этой причине можно смело рассматривать как единое целое балтославянские популяции. Хотя для обывателя балты и славяне кажутся далекими друг от друга, генетические исследования подтверждают близость народностей.

Исходя из лингвистических исследований, также наиболее близки между собой славяне и балты, что позволяет выделять соответствующую балтославянскую группу. Географический признак позволяет говорить, что генетика русского человека имеет много общего с балтами. В то же время отмечается, что восточные и западные славянские ветви хоть и близки друг к другу, но имеют ряд значимых отличий, не позволяющих их приравнивать друг к другу. Специальный случай - южные славянские ветви, генофонд которых принципиально отличается, но довольно близок к народностям, с которыми славянская ветвь соседствует географически.

Как это сформировалось?

Выяснение происхождения русских в генетике настоящего времени - одна из основных и наиболее актуальных задач. Ученые, занимающиеся такого рода научной работой, стремятся определить, какова прародина русского человека, каковы были пути миграций славян, как развивалось общество. На практике все существенно сложнее, нежели это может показаться на схеме. Даже если секвенировать полный геном, генетическое исследование не может дать полного и исчерпывающего ответа на археологические, лингвистические вопросы. Несмотря на регулярно проводимые в этом направлении исследования, пока не удается определить, какова славянская прародина.

Имеет немало общего генетика русских и татар, а также иных национальностей. В целом славянский генофонд довольно богат элементами, полученными от дославянского населения. Это объясняется историческими перипетиями. Со стороны Новгорода люди постепенно переселялись севернее и несли с собой свой язык, культуру и религию, постепенно ассимилируя сообщество, через которое проходили. Если местное население по численности было больше, нежели мигрировавшие славяне, генофонд именно их особенности отражал в большей степени, в то время как на славянскую долю пришлось существенно меньше признаков.

История и практика

Выясняя генетику русских, ученые установили, что славянские языки быстро распространялись, вскоре охватили едва ли не половину европейской территории. В то же время численность популяции была не в той степени велика, чтобы можно было заселить эти пространства. Следовательно, предположили ученые, славянский генофонд в целом имеет выраженные особенности некоторого дославянского компонента, отличающегося для юга, севера и востока, запада. Сходная ситуация сложилась с индоевропейским народностями, которые распространились по Индии и частично - в Европе. Генетически им свойственно немного общих черт, а объяснение нашли такое: индоевропейцы ассимилировались в европейское население, проживавшее на этих землях изначально. От первых пришел язык, от вторых - генофонд.

Ассимиляция, выявленная при исследовании генетики русских учеными, как заключали специалисты, представляет собой правило, по которому составлены многие существующие в наши дни генофонды. При этом основным этническим маркером по-прежнему остается язык. Это хорошо иллюстрирует разность между славянами, проживающими на юге и севере - генетика их отличается довольно сильно, но язык один. Поэтому народ также один, хотя и имеет два разных источника, слившихся в процессе развития общества. Вместе с тем обращают внимание, что для формирования этноса ключевую роль играет человеческое самопознание, а на него влияет язык.

Родные или соседи?

Многих интересует, что есть общего и отличного в генетике русских и татар. С давних пор считается, что сильное влияние на генофонд русских оказал период татаро-монгольского ига, но проведенные относительно недавно специфические исследования показали, что сложившийся стереотип ошибочен. Нет однозначного влияния генофонда монгол. А вот татары оказались к русским довольно близки.

Фактически татары - европейская народность, имеющая минимум сходства с заселяющими центральные азиатские регионы людьми. Это усложняет поиск отличия их от европейцев. В то же время установлено: татарский генофонд близок к белорусскому, польскому, с которым исторически у народности не было таких тесных контактов, как с русскими. Это позволяет говорить о сходстве русских и татар, не объясняя его доминированием.

ДНК и история

Почему в генетике северные русские оказываются столь непохожими на южные народности? Почему запад и восток так сильно отличаются друг от друга? Ученые установили, что разнообразие этносов связано с протекающими тонкими процессами - генетическими, заметными только при анализе продолжительных временных промежутков. Чтобы оценить генетические изменения, необходимо изучить митохондриальные ДНК, передающиеся от матерей, и Y-хромосомы, которые потомство получает по линии отца. В настоящий момент уже сформированы внушительные информационные базы, отражающие, в какой последовательности нуклеотиды расположены в молекулярной структуре. Это позволяет создавать филогенетические древа. Около двух десятилетий тому назад сформировалась новая наука, получившая название «молекулярная антропология». Она исследует мтДНК и мужские специфические хромосомы и выявляет, какова генетическая этническая история. Исследования по этому направлению из года в год становятся все обширнее, их количество растет.

Чтобы выявить все особенности русских, генетики пытаются восстановить те процессы, под влиянием которых генофонды сформировались. Необходимо оценить распределение в пространстве и времени этноса - на основании этого можно собрать больше данных об изменения структуры ДНК. Изучение филогеографической изменчивости и ДНК уже сегодня позволило проанализировать данные, собранные от многих тысяч людей из разных областей мира. Данные достаточно объемны, чтобы проводимые по ним статические анализы были достоверными. Обнаружены монофилетические группы, на основании которых постепенно восстанавливаются шаги эволюции русских.

Шаг за шагом

Изучая генетику русских, ученые смогли идентифицировать митохондриальные линии, свойственные народностям, проживающим в восточных, западных евразийских регионах. Сходные исследования проводились и относительно американских, австралийских и африканских этносов. Евразийские подгруппы, предположительно, произошли от трех крупных макрогрупп, сформировавшихся около 65 000 лет тому назад из одной группы мтДНК, появившейся в Африке.

Анализируя разделение мтДНК в евразийском генофонде, установили, что достаточно существенна этнорасовая специфичность, поэтому восток и запад имеют кардинальные отличия. А вот на севере преимущественно встречаются мономитохондриальные линии. Особенно ярко это выражено в краевых популяциях. Генетические исследования позволяют определить, что местным народностям свойственны лишь европеоидные мтДНК или полученные от монгольской расы. Основная часть нашей страны, в свою очередь, - это территория контакта, где стало источником расогенеза продолжительное время.

Одна из крупных научных работ, посвященная генетике русского народа, стартовала около двух десятилетий тому назад и основана на исследовании разности линий ДНК, передающихся по отцу и матери. Для определения, насколько велика вариабельность в рамках одной популяции, было решено прибегнуть к комбинированному исследованию, одновременно анализируя полиморфизм и отдельные участки, ответственные за шифрование сведений. Вместе с тем ученые учитывали изменчивость последовательностей нуклеотидов и гипервариабельные элементы, не отвечающие за кодирование данных. Установлено, что митохондриальный генетический фонд исконного населения нашей страны разнообразен, хотя определенные общие группы обнаружить все же удалось - они совпали с иными, распространенными среди европейцев. Примесь монголоидного генофонда оценивается в среднем в 1,5 %, причем преимущественно это восточноевразийские мтДНК.

Выявляя особенности генетики русского народа, ученые предприняли попытки объяснить, почему мтДНК показывает такое разнообразие, в какой степени явление связано с формированием этноса. Для этого проанализировали гаплотипы мтДНК разных популяций европейского населения. Филогеографические исследования показали, что некоторые общие черты есть, но маркеры обычно скомбинированы редкими подгруппами и гаплотипами. Это позволяет предположить существование некоторого общего субстрата, ставшего базой формирования генетического фонда славян из восточных, западных регионов, а также живущих поблизости национальностей. А вот популяции южных славян существенно отличаются от проживающих поблизости итальянцев, греков.

В рамках оценки эволюции русских в генетике предприняты попытки объяснения разделения славян на несколько ветвей, а также отслеживания процессов изменения генетического материала на этом фоне. Исследования подтвердили, что между разными группами славян есть отличия и в генофонде, и антропологические. Вариабельность явления определяется теснотой контактов с дославянским населением в конкретной области, а также интенсивностью взаимного влияния на соседние народности.

Как все начиналось?

Исследования генетики русских, проводимые современными специалистами, а также изучение генофонда других этносов стало возможным за счет вклада великих ученых, занимавшихся биологией, антропологией и эволюцией человека. Исключительно значимым считается вклад в эту область двух рожденных в императорской России ученых - Мечникова, Павлова. За свои заслуги они были награждены Нобелевской премией, а кроме того, смогли привлечь внимание широких масс к биологии. Перед Первой мировой в университете в Петербурге начали читать впервые генетический курс. В 1917-м в Москве открыли Институт экспериментальной биологии. Еще через три года сформировали евгеническое общество.

Невозможно переоценить вклад русских ученых в развитие генетики. Кольцов и Бунак, к примеру, активно исследовали частоту встречаемости разных групп крови, и их работы заинтересовали выдающихся специалистов того времени. Вскоре ИЭБ стал объектом притяжения самых видных российских ученых. Перечисляя список русских генетиков, разумно начать с Мечникова и Павлова, но не стоит забывать и о следующих выдающихся деятелях:

  • Серебровский;
  • Дубинин;
  • Тимофеев-Ресовский.

Стоит отметить, что именно Серебровский стал автором термина «геногеография», который применяется для обозначения науки, чья область интересов - генофонды популяций человека.

Наука: только вперед!

Именно в это время, когда вели свою активную деятельность самые известные русские генетики, стало обширно применяться в специфических кругах слово «генофонд». Его ввели для обозначения генной совокупности, присущей некоторой популяции. Геногеография постепенно превращается в значимый инструмент. Тот, который необходим для оценки этногенеза народностей, существующих на нашей планете. Серебровский, к слову сказать, придерживался мнения, что его детище - это лишь часть истории, позволяющая через генофонд восстановить миграции в прошлом, процессы смешения этносов и рас.

К сожалению, исследования генетики (евреев, русских, татар, немцев и других этносов) существенно замедлились в период «лысенковщины». В Великобритании в это время издан труд Фишера, посвященный генетическому разнообразию и естественному отбору. Именно он стал базой для науки, актуальной для современных ученых. Для популяционной генетики. А вот в сталинском Советском Союзе генетика оказывается объектом гонения по инициативе Лысенко. Именно его идеи привели к тому, что в 1943-м в заключении скончался Вавилов.

История и наука

Вскоре после ухода от власти Хрущева генетика в СССР снова начинает развиваться. В 1966-м открыт институт имени Вавилова, где активно функционирует лаборатория Рычкова. В следующем десятилетии значимые работы организованы с участием Кавалли - Сфорца, Левонтина. В 1953-м удалось расшифровать структуру ДНК - это стало настоящим прорывом. Авторам трудов присудили Нобелевскую премию. Генетики всего мира получили в свое распоряжение новые инструменты - маркеры и гаплогруппы.

Как выше уже было сказано, потомство получает ДНК от обоих родителей. Полностью гены не передаются, но в процессе рекомбинации отдельные фрагменты наблюдаются у разных поколений. Происходит замещение, смешение, формирование новых последовательностей. Исключительные объекты - выше упомянутые отцовские и материнские специфические хромосомы.

Генетики начали изучать однородительские маркеры, и вскоре оказалось, что именно так можно извлечь огромный объем информации о происходивших в прошлом процессах. Через мтДНК, в неизменном виде передающемся между поколениями от матери, можно отследить предков, существовавших десятки тысячелетий тому назад. В мтДНК возникают мелкие мутации (это неизбежно), и они также передаются по наследству, благодаря чему можно отследить, как и почему, когда сформировались генетические отличия, свойственные разным этносам. 1963-й - год открытия мтДНК; 1987-й - год, когда вышел труд об мтДНК, объяснивший, какой была общая женская группа предков всех людей.

Кто и когда?

Изначально ученые предполагали, что общая группа женских прародителей существовала в восточных африканских регионах. Период их существования по приблизительным оценкам - 150-250 тысячелетий тому назад. Уточнение прошлого посредством механизмов генетики позволило выяснить, что период значительно ближе - с того момента прошло около 100-150 тысячелетий.

В те времена всеобщее число представителей популяции было относительно мало - лишь несколько десятков тысяч особей, разбившихся на отдельные группы. Каждая из них пошла своим путем. Современный человек около 70-100 тысячелетий тому назад преодолел Баб-эль-Мандебский пролив, оставив за спиной Африку, и начал осваивать новые территории. Альтернативный вариант миграции, рассматриваемый учеными - через Синайский полуостров.

Через мтДНК ученые получили представление о путях распространения по планете женской половины человечества. Вместе с тем появилась новая информация о мутациях мужской хромосомы. Исходя из собранных за несколько лет сведений, в конце прошлого столетия составили гаплогруппы, сформировали из них единое древо.

Генетика: реальность и наука

Основной задачей генетиков было выявление исторических путей перемещения людей, определение связей между этносами, а также особенностей эволюции. С этой точки зрения жители восточноевропейского региона представляют собой особенный интерес. Впервые для такого объекта изучения однородительские маркеры начали исследовать в последнем десятилетии прошлого века. Выяснялась степень родственности с монголоидной расой и генетическая близость с восточноевропейскими народностям.

В последние десятилетия наиболее существенным считается вклад, внесенный в науку Балановской и Балановским. Проводятся исследования под руководством Малярчука - они посвящены особенностям генетического фонда населения Сибири и дальневосточных регионов. Как показала практика, максимум пользы можно извлечь, исследуя население мелких пунктов - деревенек и городков. Для изучения выбирают таких людей, чьи ближайшие предки (второе поколение) одной этнической принадлежности, входят в одну региональную популяцию. Впрочем, в некоторых случаях исследуют население крупных городов, если это допускается условиями и техническим заданием проекта.

Удалось выявить, что отдельные группы русских имеют достаточно сильные отличия в генофонде. Уже исследовано несколько десятков разновидностей генетических наборов. Максимум информации удалось собрать о людях, проживающих на территории бывшего царства, управляемого Иваном Грозным.

Задача современного генетика - исследование особенностей конкретной популяции, не народа в целом. Гены не имеют этнической идентификации, не могут говорить. Ученые определяют, совпадают ли границы распространения генотипа с этническими и языковыми, а также определяют специфический типичный набор генов, свойственный определенной народности.


Если век XIX по праву вошел в историю мировой цивилизации как век физики, то веку XXI, в котором нам счастливилось жить, по всей вероятности, уготовано место века биологии, а может быть, и генетики.

Середина и вторая половина XX столетия ознаменовались значительным уменьшением частоты и даже полной ликвидацией ряда инфекционных заболеваний, снижением младенческой смертности, увеличением средней продолжительности жизни. В развитых странах мира центр внимания служб здравоохранения был перемещен на борьбу с хронической патологией человека, болезнями сердечно-сосудистой системы, онкологическими заболеваниями.

Стало очевидным, что прогресс в области медицинской науки и практики тесно связан с развитием общей и медицинской генетики, биотехнологии. Потрясающие достижения генетики позволили выйти на молекулярный уровень познания генетических структур организма, и наследования, вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Получила развитие клиническая генетика – одно из важнейших направлений современной медицины, приобретающих реальное профилактическое значение. Выяснилось, что множество хронических болезней человека есть проявление генетического груза, риск их развития может быть предсказан задолго до рождения ребенка на свет, и уже появились практические возможности снизить давление этого груза.

В феврале 2001 года два наиболее авторитетных научных журнала в мире "Nature" и "Science" опубликовали отчеты двух научных групп, расшифровавших геном человека. В журнале "Nature" от 12 февраля 2001 года приведены подробные данные о структуре генома человека, полученные международным консорциумом под руководством Френсиса Коллинза, в котором работали ученые Англии, Германии, Китая, США, Франции и Японии в рамках международной программы "Геном человека" с привлечением государственного финансирования. Эта группа выделила в ДНК особые маркеры, легко распознаваемые участки, и по ним определила нуклеотидные последовательности генома человека. В журнале "Science" от 16 февраля 2001 года ученые частной фирмы "Celera Genomics" под руководством Крэга Вентера опубликовали результаты расшифровки генома человека, полученные с применением другой стратегии исследований, в основе которой лежит анализ последовательностей нуклеотидных оснований в коротких участках ДНК человека. Таким образом, при расшифровке генома человека были использованы два научных подхода, каждый из которых имеет свои преимущества и недостатки. Важно отметить, что получены близко совпадающие результаты, которые взаимно дополняют друг друга и свидетельствуют об их достоверности. Вопрос о точности изучения последовательностей ДНК особенно важен в отношении генома человека. В нашем геноме существует большое число повторов нуклеотидов. Кроме них в хромосомах есть теломеры, центромеры и зоны гетерохроматина, где секвенирование затруднено и они пока исключены из исследований. Предварительный анализ опубликованных материалов по расшифровке генома человека позволяет отметить несколько особенностей. Количество генов у человека оказалось существенно меньше, чем предполагали ученые несколько лет назад, называя величины 80-100 000 генов. По данным, опубликованным в журнале "Nature", у человека около 32 000 генов, тогда как в геноме мухи дрозофил их 13 000, круглого червя нематоды - 19100, а растения арабидопсиса - 25 000 генов. При сопоставлении этих величин следует иметь в виду, что расчетное число генов человека получено методами компьютерной геномики и не у всех генов выявлены конечные продукты. Кроме того, в геноме человека действует принцип "один ген - много белков", то есть многие гены кодируют семейство родственных, но существенно различающихся белков. Следует также иметь в виду процесс посттрансляционной модификации белков за счет различных химических групп - ацетильных, гликозильных, метильных, фосфатных и других. Поскольку таких групп в молекуле белка много, то и разнообразие может быть практически безграничным. Другой особенностью генома человека является наличие в нем генов различных вирусов и бактерий, которые постепенно накапливались в процессе многомиллионной эволюции человека. По образному выражению академика Л.Л. Киселева, "...геном человека представляет собой молекулярное кладбище, на котором покоятся вирусные и бактериальные гены, большинство из них молчит и не функционирует".

Согласно недавним оценкам Международной службы по внедрению прикладной биотехнологии в сельском хозяйстве посевные "генетические" площади и производство генных зерновых продуктов с каждым годом увеличиваются на 25-30%.

Но до сих пор страны - участницы ЕС не определились с перспективами генетических технологий в сельском хозяйстве и пищевой промышленности. А соблазн-то велик: по мнению французского микробиолога Жана-Поля Прюнье, "с помощью манипуляции молекулами и прививок одному растению клеток другого, в том числе искусственно выращенного, можно получать самые разнообразные плодоовощи, злаковые и корнеплоды. Причем высокоурожайные, почти невосприимчивые к болезням, вредителям, к недостатку воды и света или засухе".
Например, во Франции ныне потребляется около 50 наименований генетических продуктов из генной кукурузы и 10 - из генетических злаков. Причем последние уже начинают вытеснять там, а также во французских заморских территориях традиционные рапс, хлопчатник, кукурузу, сою, кормовые травы и даже виноградники.

Определение отцовства методом ДНК-диагностики

Носителем наследственной информации человека является ДНК. У каждого человека она располагается в 46 парных хромосом. 23 хромосомы человек получает от матери, остальные 23 – от отца. Нумерация каждой пары производится в соответствии с международной классификацией, при этом различия между парами хромосом выявляются визуально с помощью микроскопа; хромосомы каждой пары кроме половых хромосом Х и Y считаются одинаковыми.

Однако, современные молекулярно-генетические методы позволяют индивидуализировать каждую хромосому пары. Это и позволяет проводить определение отцовства на уровне ДНК.

При установлении отцовства исследуются индивидуальные различия ДНК определенных парных хромосом. Сначала выясняется, какую хромосому из пары ребенок получил от матери, затем производится сравнение оставшейся хромосомы с хромосомами предполагаемого отца.

Другие возможности современной генетики

На сегодняшний день определен широкий спектр генов, неблагоприятные варианты которых могут опосредовать возникновение гестоза, исходя из известных на сегодняшний день возможных путей развития эндотелиальной дисфункции, лежащей в основе его патогенеза. Генетическая компонента гестоза включает не только материнский, но и плодовый генетический полиморфизм и может составлять до 50% всех факторов, влияющих на развитие гестоза; в первую очередь это гены главного комплекса гистосовместимости, гены цитокинов и факторов роста, гены вазоактивных веществ, синтезируемых эндотелием, гены системы гемостаза, гены сосудистого тонуса и гены антиоксидантной системы.

Сегодня ученые считают, что практически все заболевания определяются наследственными факторами, которые проявляются в тех или иных условиях внешней среды. Мы даем информацию человеку о варианте (благоприятном или неблагоприятном) гена предрасположенности к определенному заболеванию. Важно понимать, что генетический паспорт помогает предсказать возможность появления заболевания, а не его стопроцентное возникновение. Зная о генетической предрасположенности, можно подкорректировать свой образ жизни таким образом, чтобы снизить вероятность развития болезни.

Большое значение изучение генов, ответственных за высокие спортивные достижения, имеет для профессиональных атлетов. В нашей лаборатории ДНК-паспортизация спортсменов проводится по комплексу 20 основных генов, оказывающих существенное влияние на состояние опорно-двигательного аппарата, выносливость, скорость, силу, адаптацию к гипоксии, способность к восстановлению после физических нагрузок. Изучая, например, склонность к гипоксии (кислородному голоданию) у Олимпийской сборной Беларуси по биатлону, мы выявили у некоторых не очень желательные гены, благодаря чему можно было подкорректировать тренировочный процесс, оптимизировать нагрузку.

В Институте ревматологии систематические исследования структуры наследственной предрасположенности к ревматическим заболеваниям проводятся в течение последних 25 лет с использованием генеалогического, близнецового, популяционно-генетического, иммуногенетического и молекулярно-генетического методов исследования.

Проведенные исследования, также как и работы зарубежных авторов, показали, что вклад генетических факторов в детерминацию ревматических заболеваний превалирует над вкладом средовых факторов. Это открывает перспективы поиска генов предрасположенности к ревматическим заболеваниям с использованием методологии «обратной генетики». Стратегия «обратной генетики» применительно к поиску генов предрасположенности на первом этапе подразумевает их локализацию на конкретном участке конкретной хромосомы (т.е. картирование) с помощью анализа сцепления с генетическими маркерами, хромосомная локализация которых уже известна. Анализ сцепления представляет собой проверку совместного или независимого наследования заболевания и генетических маркеров в семьях. Чем ближе на хромосоме расположены ген предрасположенности к заболеванию и гены генетических маркеров, тем чаще они наследуются совместно в родословных, что позволяет с помощью показателей частоты рекомбинации между ними определить хромосомную локализацию гена чувствительности. Количественным показателем сцепления является логарифм соотношения шансов за и против его наличия в обследованной семье - лод-балл. Суммарная величина лод-баллов для выборки семей, равная +3,0 и более (что соответствует вероятности р=0,001 и менее), свидетельствует о наличии сцепления, тогда как величина -2,0 и менее - о его отсутствии.

Для выявления гена предрасположенности с помощью анализа сцепления используются в основном два подхода:

А) отбираются гены-кандидаты на роль главного гена и исследуется их полиморфизм в информативных семьях с последующим подсчетом лод-баллов, причем отрицательное значение этого показателя (-2,0 и менее) позволяет однозначно исключить ген-кандидат из претендентов на роль главного гена;

Б) подбираются полиморфные, достаточно информативные (с высоким уровнем гетерозиготности) ДНК-маркеры (от 15 и более на хромосому), проводится тестирование семей с последующим анализом сцепления между заболеванием и всеми использованными маркерами. Полученные в результате такого анализа значения лод-баллов помогают определить сегмент хромосомы, в котором может быть локализован ген предрасположенности к заболеванию.

Таким образом, методология «обратной генетики» открывает возможности для поиска генов предрасположенности, не имея предварительной информации о их количестве, функции и значимости в этиопатогенезе заболевания.

В рамках вышеизложенной методологии в последние годы был проведен широкий поиск генов чувствительности к ряду ревматических заболеваний. Так, Shiozawa и соавт. (1997) на семьях с повторными случаями ревматоидного артрита проскринировали все хромосомы, использовав для этой цели 358 полиморфных ДНК-маркера. В результате проведенной работы методом анализа сцепления были выделены два перспективных для поиска генов чувствительности к ревматоидному артриту участка на Х-хромосоме, в которых локализованы ген рецептора фактора некроза опухолей и ген лиганда CD40, являющихся, по мнению авторов, генами-кандидатами предрасположенности к PA. F.Cornelis и соавт. (1997), использовав сходную методологию, выявили два критических хромосомных участка, маркеры которых сцеплены с ревматоидном артрите и могут содержать гены чувствительности к заболеванию. Один из этих участков располагается на Х-хромосоме (локализация соответствует данным японских авторов), тогда как другой расположен в том же самом сегменте 3-й хромосомы, где и ген IDDM9, являющийся одним из генов, детерминирующих чувствительность к инсулинзависимому диабету. По данным авторов, вклад этого гена в детерминацию заболевания составляет около 27%.

Вам также будет интересно:

Основные виды многогранников и их свойства
Хотя стереометрию изучают только в старших классах школы, но с кубом, правильными...
Деятельность человека и ее основные формы (труд, игра, учение)
Деятельность ­ это присущая только человеку форма взаимодействия с окружающим миром. Пока...
Как написать диктант по географии
Всероссийский географический диктант 2016 года, который состоялся 20 ноября 2016 года. Это...
Исторические факты в фильме «Иван Васильевич меняет профессию
Кто не знает эту весёлую комедию Леонида Гайдая? Таких среди россиян, пожалуй, нет. Мы...
Живая азбука, живые буквы в картинках, русский алфавит в картинках На что похожи буквы рисунок получили приз
В 1 классе после изучения всех букв алфавита детям предлагается выполнить проект "На что...