Синтез белка в клетках мышц. Синтез белков в клетке - описание, функции процесса Синтез белка в животной клетке

Биосинтез белка и генетический код

Определение 1

Биосинтез белка – ферментативный процесс синтеза белков в клетке. В нём участвуют три структурные элемента клетки – ядро, цитоплазма, рибосомы.

В ядре клетки в молекулах ДНК сохраняется информация о всех белках, которые в ней синтезируются, зашифрованная с помощью четырёхбуквенного кода.

Определение 2

Генетический код – это последовательность расположения нуклеотидов в молекуле ДНК, которая определяет последовательность аминокислот в молекуле белка.

Свойства генетического кода таковы:

    Генетический код триплетный, то есть каждой аминокислоте соответствует свой кодовый триплет (кодон ), состоящий из трёх расположенных рядом нуклеотидов.

    Пример 1

    Аминокислота цистеин кодируется триплетом А-Ц-А, валин – триплетом Ц-А-А.

    Код не перекрывается, то есть нуклеотид не может входить в состав двух соседних триплетов.

    Код вырожден, то есть одна аминокислота может кодироваться несколькими триплетами.

    Пример 2

    Аминокислота тирозин кодируется двумя триплетами.

    Код не имеет запятых (разделительных знаков), считывание информации происходит тройками нуклеотидов.

    Определение 3

    Ген – участок молекулы ДНК, который характеризуется определённой последовательностью нуклеотидов и определяет синтез одногой полипептидной цепи.

    Код является универсальным, то есть единым для всех живых организмов – от бактерий до человека. У всех организмов есть одни и те же 20 аминокислот, которые кодируются одними и теми же триплетами.

Этапы биосинтеза белка: транскрипция и трансляция

Структура любой белковой молекулы закодирована в ДНК, которая не участвует непосредственно в её синтезе. Она служит лишь матрицей для синтеза РНК.

Процесс биосинтеза белка происходит на рибосомах, которые расположены преимущественно в цитоплазме. Значит, для осуществления передачи к месту синтеза белка генетической информации из ДНК нужен посредник. Эту функцию выполняет иРНК.

Определение 4

Процесс синтеза молекулы иРНК на одной цепи молекулы ДНК на основании принципа комплементарности называется транскрипцией , или переписыванием.

Транскрипция происходит в ядре клетки.

Процесс транскрипции осуществляется одновременно не на всей молекуле ДНК, а лишь на её небольшом участке, который отвечает определённому гену. При этом происходит раскручивание части двойной спирали ДНК и короткий участок одной из цепей оголяется – теперь он будет выполнять роль матрицы для синтеза иРНК.

Потом вдоль этой цепи двигается фермент РНК-полимераза, соединяющий нуклеотиды в цепь иРНК, которая удлиняется.

Замечание 2

Транскрипция может одновременно происходить и на нескольких генах одной хромосомы и на генах разных хромосомах.

Образованная в результате иРНК содержит последовательность нуклеотидов, которая является точной копией последовательности нуклеотидов на матрице.

Замечание 3

Если в молекуле ДНК есть азотистое основание цитозин, то в иРНК – гуанин и наоборот. Комплементарной парой в ДНК является аденин – тимин, а РНК вместо тимина содержит урацил.

На специальных генах синтезируются и два другие типа РНК – тРНК и рРНК.

Начало и окончание синтеза всех типов РНК на матрице ДНК строго фиксированы специальными триплетами, которые контролируют запуск (инициирующие) и остановку (терминальные) синтеза. Они выполняют функции «разделительных знаков» между генами.

Соединение тРНК с аминокислотами происходит в цитоплазме. Молекула тРНК формой напоминает листик клевера, на его верхушке расположен антикодон – триплет нуклеотидов, который кодирует аминокислоту, которую переносит данная тРНК.

Сколько видов аминокислот, столько существует и тРНК.

Замечание 4

Поскольку много аминокислот могут кодироваться несколькими триплетами, то количество тРНК больше 20 (известно около 60 тРНК).

Соединение тРНК с аминокислотами происходит с участием ферментов. Молекулы тРНК транспортируют аминокислоты к рибосомам.

Определение 5

Трансляция – это процесс, в результате которого информация о структуре белка, записанная в иРНК в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в молекуле белка, которая синтезируется.

Этот процесс осуществляется в рибосомах.

Сначала иРНК присоединяется к рибосоме. На иРНК «нанизывается» первая рибосома, которая синтезирует белок. По мере продвижения рибосомы на конец иРНК, который освободился, «нанизывается» новая рибосома. На одной иРНК могут находиться одновременно более 80 рибосом, которые синтезируют один и тот же белок. Такая группа рибосом, соединённых с одной иРНК, называется полирибосомой , или полисомой . Вид белка, который синтезируется, определяется не рибосомой, а информацией, записанной на иРНК. Одна и та же рибосома способна синтезировать разные белки. После завершения синтеза белка рибосома отделяется от иРНК, а белок поступает в эндоплазматическую сеть.

Каждая рибосома состоит из двух субъединиц – малой и большой. Молекула иРНК присоединяется к малой субъединице. В месте контакта рибосомы и иРН находятся 6 нуклеотидов (2 триплета). К одному из них всё время подходят из цитоплазмы тРНК с разными аминокислотами и касаются антикодоном кодона иРНК. Если триплеты кодона и антикодона оказываются комплементарными, между аминокислотой уже синтезированной части белка и аминокислотой, которая доставляется тРНК, возникает пептидная связь. Соединение аминокислот в молекулу белка осуществляется с участием фермента синтетазы. Молекула тРНК отдаёт аминокислоту и переходит в цитоплазму, а рибосома передвигается на один триплет нуклеотидов. Так последовательно синтезируется полипептидная цепь. Продолжается всё это до тех пор, пока рибосома не дойдёт к одному из трёх терминирующих кодонов: УАА, УАГ или УГА. После этого синтез белка прекращается.

Замечание 5

Таким образом, последовательность кодонов иРНК определяет последовательность включения аминокислот в цепь белка. Синтезированные белки поступают в каналы эндоплазматического ретикулюма. Одна молекула белка в клетке синтезируется за 1 - 2 минуты.

С биохимической точки зрения синтез белка в мышцах – очень сложный процесс. Информацию о структуре всех необходимых организму белков содержит ДНК, находящаяся в ядре клеток. Функции белка зависят от последовательности аминокислот в их структуре. А эта последовательность кодируется последовательностью нуклеотидов ДНК, в которой каждой аминокислоте соответствует группа из трех нуклеотидов – триплет. И каждый участок ДНК – геном – отвечает за синтез одного типа белка.

Белок строится рибосомами в цитоплазме. Необходимая информация о его структуре передается из ядра на рибосомы с помощью и-РНК (информационной РНК) – своеобразной «копии» нужного генома. Синтез и-РНК – это первый этап биосинтеза белков, называемый транскрипцией («переписыванием»).

Второй этап синтеза белков в клетках – трансляция («перевод» нуклеотидного кода ДНК в последовательность аминокислот). На этом этапе и-РНК прикрепляется к рибосоме, затем рибосома начинает от стартового кодона двигаться вдоль цепи и-РНК и присоединять на каждом кодоне (нуклеотидном триплете, кодирущем информацию об одной аминокислоте) и-РНК – аминокислоты, приносимые т-РНК (транспортными РНК). Т-РНК содержат молекулу определенной аминокислоты и антикодон, соответствующий определенному кодону и-РНК. Рибосома присоединяет аминокислоту к растущей белковой цепи, потом отсоединяет т-РНК и передвигается к следующему кодону. Так происходит до тех пор, пока рибосоме не встретится терминатор – стоп-кодон. После этого синтез белковой молекулы прекращается и она отсоединяется от рибосомы. Остается только транспортировать готовую белковую молекулу в растущую мышечную клетку.

Активация синтеза

Главный механизм, запускающий синтез белка в мышцах – это активация всем известного mTOR’а (mammalian target of rapamycin – т.е. «мишень рапамицина у млекопитающих»). «Мишенью» он называется потому, что mTOR отвечает за рост и размножение клеток, и эти процессы блокируются особыми ингибиторами (например, рапамицином), которые воздействуют именно на данный белок.

Для спортсмена важно, что в мышцах постоянно происходит синтез и разрушение белка, обеспечивающие обновление мышечной ткани. И если мы хотим, чтобы наши мышцы подросли, нам надо сделать так, чтобы на протяжении определенного периода синтез белка превосходил его разрушение. Для этого мы и рассматриваем процессы активации синтеза белка, ключевым элементом которых является mTOR.

Биохимически mTOR – это белок-фермент (относящийся к группе протеинкиназ), который стимулирует процесс трансляции, т.е. синтеза белка рибосомами на и-РНК (ее еще называют м-РНК – матричная РНК). В свою очередь, сам mTOR активизируется аминокислотами (лейцин, изолейцин и др.) и факторами роста (различные гормоны – соматотропин, инсулин и др.).

Мышечные нагрузки стимулируют mTOR опосредованно, через систему сигналов о разрушении мышц и усиление секреции факторов роста (например, механического фактора роста).

Белковый баланс

Итак, если наша задача — добиться положительного белкового баланса , т.е. превосходства синтеза белка над его разрушением, то нам следует снижать катаболизм (разрушение мышц) и стимулировать их рост. И у нас есть прекрасная возможность добиться в этом успеха — т.н. «белково-углеводное окно». Всем понятно, что в период вскоре от начала тренировки организм атлета испытывает острую нехватку питательных веществ, которая продолжается примерно полтора-два часа после окончания тренировки, пока организм не восполнит нехватку необходимых веществ из собственных ресурсов. Учитывая, что скорость всасывания и усвоения аминокислот в составе протеинового коктейля составляет час-полтора, то мы получаем пределы белково-углеводного окна, принятие аминокислот и углеводов в котором имеет высокую эффективность усвоения, - от 1,5 ч до тренировки до 1,5 ч после.

По мудрости Природы многие вещества (такие как ) обладают способностью не только стимулировать синтез белка, но и подавлять его разрушение (например, угнетают действие кортизола). Считается, что прием белка (лучше в виде или даже , например, ) и углеводов может дать хороший анаболический эффект в любом из трех периодов белково-углеводного окна — до тренировки, во время тренировки и после тренировки. Но настоятельно рекомендуют прием БЦАА непосредственно перед тренировкой или сразу после, а также прием углеводов с высоким гликемическим индексом во время тренировки и обязательно прием белка в течение часа после тренировки. Так Вы обеспечите свой организм всеми необходимыми веществами для активного синтеза белка.

План-конспект урока : «Синтез белков в клетке»

(Для профильного 10-ого класса, время урока - на 2 часа)

Учитель: Мастюхина Анна Александровна

МОУ «СОШ имени генерала Захаркина И.Г.»

Задача урока:

Образовательная: изучить особенности биосинтеза белков в клетке , изучить понятия: ген, генетический код, триплет, кодон, антикодон, транскрипция, трансляция, полисома ; п родолжить формирование знаний о механизмах биосинтеза белка на примере трансляции; выяснить роль транспортных РНК в процессе биосинтеза белка; раскрыть механизмы матричного синтеза полипептидной цепи на рибосомах.

Развивающая: в целях развития познавательного интереса учащихся заранее подготовить сообщения(«Интересные факты о гене», «Генетический код»,«Транскрипция и трансляция») . Для развития навыков практического труда составит синквейн. В целях развития логического мышления научится решать задачи.

Воспитательная: В целях формирования научного мировоззрения доказать важность и значимость синтеза белков в клетках, а также их жизненную необходимость.

Ф.О.У.Р .: урок.

Тип урока : комбинированный

Вид урока : с презентацией « Синтез белков в клетке » и демонстрацией магнитных моделей.

Оборудование: презентация «Синтез белков в клетке »; таблица «Генетический код»; Схема «Образование и-РНК по матрице ДНК (транскрипция)»; Схема «Строение т-РНК»; Схема «Синтез белка в рибосом (трансляция)»; Схема «Синтез белка на полисоме»; Карточки с заданиями и кроссворд; магнитные модели.

Ход урока:

Методы и методические приемы:

I .Организация класса.

На предыдущих уроках мы изучали вещества, называемые нуклеиновыми кислотами. В следствии

чего рассмотрели два их вида: ДНК и РНК, ознакомились с их строением и функциями. Выяснили что в состав каждой из нуклеиновых кислот входят четыре различных азотистых основания, которые соединяются друг с другом по принципу комплементарности. Все эти знания понадобятся нам при изучении сегодняшней новой теме. Итак запишите ее название в своих рабочих тетрадях «Синтез белка в клетке».

II .Изучение нового материала:

1)Актуализация знаний:

Прежде, чем приступить к изучению новой темы, вспомним: что такое обмен веществ (метаболизм):

МЕТАБОЛИЗМ – совокупность всех ферментативных реакций клетки, связанных между собой и с внешней средой, состоящая из пластического
и энергетического обменов.

Давайте составим синквейн, первое слово которого - обмен веществ. (1-обмен веществ

2-пластический, энергетический

3-протекает,поглощает,выделяет

4-совокупность ферментативных реакций клетки

5-метаболизм)

Биосинтез белка относится к реакциям пластического обмена.

Биосинтез белка важнейший процесс в живой природе. Это создание молекул белка на основе информации о последовательности аминокислот в его первичной структуре, заключенной в структуре ДНК

Задание: закончите предложения, вписав недостающие термины.

1. Фотосинтез – это … (синтез органических веществ на свету).

2. Процесс фотосинтеза осуществляется в органеллах клетки – … (хлоропластах).

3. Свободный кислород при фотосинтезе выделяется при расщеплении … (воды).

4. На какой стадии фотосинтеза образуется свободный кислород? На … (световой).

5. В течение световой стадии … АТФ. (Синтезируется.)

6. В темновой стадии в хлоропласте образуется … (первичный углевод – глюкоза).

7. При попадании солнечного счета на хлорофилл происходит … (возбуждение электронов).

8. Фотосинтез происходит в клетках … (зеленых растений).

9. Световая фаза фотосинтеза происходит в … (тилакоидах).

10. Темновая фаза происходит в … (любое) время суток.

Важнейшим процессом ассимиляции в клетке является присущих ей белков.

Каждая клетка содержит тысячи белков, в том числе и присущих только данному виду клеток. Так как в процессе жизнедеятельности все белки рано или поздно разрушаются, клетка должна непрерывно синтезировать белки для восстановления своих , органоидов и т. п. Кроме того, многие клетки «изготовляют» белки для нужд всего организма, например клетки желез внутренней секреции, выделяющие в кровь белковые гормоны. В таких клетках синтез белка идет особенно интенсивно.

2)Изучение нового материала:

Синтез белка требует больших затрат энергии.

Источником этой энергии, как и для всех клеточных процессов, является . Многообразие функций белков определяется их первичной структурой, т.е. последовательностью аминокислот в их молекуле. В свою очередь наследственная о первичной структуре белка заключена в последовательности нуклеотидов в молекуле ДНК. Участок ДНК, в котором содержится информация о первичной структуре одного белка, называется геном. В одной хромосоме находится информация о структуре многих сотен белков.


Генетический код.

Каждой аминокислоте белка в соответствует последовательность из трех расположенных друг за другом нуклеотидов - триплет. К настоящему времени составлена карта генетического кода, т. е. известно, какие триплетные сочетания нуклеотидов ДНК соответствуют той или иной из 20 аминокислот, входящих в состав белков (рис. 33). Как известно, в состав ДНК могут входить четыре азотистых основания: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Число сочетаний из 4 по 3 составляет: 43 = 64, т. е. можно закодировать 64 различных аминокислоты, тогда как кодируется только 20 аминокислот. Оказалось, что многим аминокислотам соответствует не один, а несколько различных триплетов - кодонов.

Предполагается, что такое свойство генетического кода повышает надежность хранения и передачи генетической информации при делении клеток. Например, аминокислоте аланину соответствуют 4 кодона: ЦГА, ЦГГ, ЦГТ, ЦГЦ, и получается, что случайная ошибка в третьем нуклеотиде не может отразиться на структуре белка - все равно это будет кодон аланина.

Так как в молекуле ДНК содержатся сотни генов, то в ее состав обязательно входят триплеты, являющиеся «знаками препинания» и обозначающие начало и конец того или иного гена.

Очень важное свойство генетического кода - специфичность, т. е. один триплет всегда обозначает только одну- единственную аминокислоту. Генетический код универсален для всех живых организмов от бактерий до человека.
Транскрипция. Носителем всей генетической информации является ДНК, расположенная в клетки. Сам же синтез белка происходит в цитоплазме клетки, на рибосомах. Из ядра в цитоплазму информация о структуре белка поступает в виде информационной РНК (и-РНК). Для того чтобы синтезировать и-РНК, участок ДНК «разматывается», деспирализуется, а затем по принципу комплементарности на одной из цепочек ДНК с помощью ферментов синтезируются молекулы РНК (рис. 34). Это происходит следующим образом: против, например, гуанина молекулы ДНК становится цитозин молекулы РНК, против аденина молекулы ДНК - урацил РНК (вспомните, что в РНК в нук- леотиды вместо тимина включен урацил), напротив тимина ДНК - аденин РНК и напротив цитозина ДНК - гуанин РНК. Таким образом, формируется цепочка и-РНК, представляющая собой точную копию второй цепи ДНК (только тимин заменен на урацил). Таким образом, информация о последовательности нуклеотидов какого-либо гена ДНК «переписывается» в последовательность нуклеотидов и-РНК. Этот процесс получил название транскрипции. У прокариот синтезированные молекулы и-РНК сразу жмогут взаимодействовать с рибосомами, и начинается синтез белка. У эукариот и-РНК взаимодействует в ядре со специальными белками и переносится через ядерную оболочку в цитоплазму.
В цитоплазме обязательно должен быть набор аминокислот, необходимых для синтеза белка. Эти аминокислоты образуются в результате расщепления пищевых белков. Кроме того, та или иная аминокислота может попасть к месту непосредственного синтеза белка, т. е. в рибосому, только прикрепившись к специальной транспортной РНК (т-РНК).

Транспортные РНК.

Для переноса каждого вида аминокислот в рибосомы нужен отдельный вид т-РНК. Так как в состав белков входят около 20 аминокислот, существует столько же видов т-РНК. Строение всех т-РНК сходно (рис. 35). Их молекулы образуют своеобразные структуры, напоминающие по форме лист клевера. Виды т-РНК обязательно различаются по триплету нуклеотидов, расположенному «на верхушке». Этот триплет, получивший название антикодон, по генетическому коду соответствует той аминокислоте, которую предстоит переносить этой Т-РНК. К «черешку листа» специальный фермент прикрепляет обязательно ту аминокислоту, которая кодируется триплетом, комплементарным антикодону.


Трансляция.

В цитоплазме происходит последний этап синтеза белка - трансляция. На тот конец и-РНК, с которого нужно начать синтез белка, нанизывается рибосома (рис. 36). Рибосома перемещается по молекуле и-РНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 с. За это мгновение одна т-РНК из многих способна «опознать» своим антикодоном триплет, на ко-тором находится рибосома. И если антикодон комплементарен этому триплету и-РНК, аминокислота отсоединяется от «черешка листа» и присоединяется пептидной связью к растущей белковой цепочке (рис. 37). В этот момент рибосома сдвигается по и-РНК на следующий триплет, кодирующий очередную аминокислоту синтезируемого белка, а очередная т-РНК «подносит» необходимую аминокислоту, наращивающую растущую цепочку белка. Эта операция повторяется столько раз, сколько аминокислот должен содержать строящийся» белок. Когда же в рибосоме оказывается один лз триплетов, являющийся «стоп-сигналом» между генами, то ни одна т-РНК к такому триплету присоединиться не може:т, так как антикодонов к ним у т-РНК не бывает. В этот момент синтез белка заканчивается. Все описываемые реакции происходят за очень маленькие промежутки времени. Подсчитано, что на синтез довольно крупной молекулы белка уходит всего около двух минут.

Клетке необходима не одна, а много молекул каждого белка. Поэтому как только рибосома, первой начавшая синтез белка на и-РНК, продвинется вперед, за ней на ту же и-РНК нанизывается вторая рибосома, синтезирующая тот же белок. Затем на и-РНК последовательно нанизываются третья, четвертая рибосомы и т. д. Все рибосомы, синтезирующие один и тот же белок, закодированный в данной и-РНК, называются полисомой.

Когда синтез белка окончен, рибосома может найти другую и-РНК и начать синтезировать тот белок, структура которого закодирована в новой и-РНК.

Таким образом, трансляция - это перевод последовательности нуклеотидов молекулы и-РНК в последовательность аминокислот синтезируемого белка.

Подсчитано, что все белки организма млекопитающего могут быть закодированы всего двумя процентами ДНК, содержащимися в его клетках. А для чего же нужны остальные 98% ДНК? Оказывается, каждый ген устроен гораздо сложнее, чем считали раньше, и содержит не только тот участок, в котором закодирована структура какого-либо белка, но и специальные участки, способные «включать» или «выключать» работу каждого гена. Вот почему все клетки, например человеческого организма, имеющие одинаковый набор хромосом, способны синтезировать различные белки: в одних клетках синтез белков идет с помощью одних генов, а в других - задействованы совсем иные гены. Итак, в каждой клетке реализуется только часть генетической информации, содержащейся в ее генах.

Синтез белка требует участия большого числа ферментов. И для каждой отдельной реакции белкового синтеза требуются специализированные ферменты.

IV .Закрепление материала:

Заполните таблицу:

В-1

Биосинтез белка состоит из двух последовательных этапов: транскрипции и трансляции.

Решите задачу 1:

Даны антикодоны тРНК: ГАА, ГЦА, ААА, АЦГ. Используя таблицу генетического кода, определите последовательность аминокислот в молекуле белка, кодоны иРНК и триплеты во фрагменте гена, кодирующего этот белок.

Решение:

Кодоны иРНК: ЦУУ – ЦГУ – УУУ – УГЦ.

Последовательность аминокислот: лей – арг – фен – цис.

Триплеты ДНК: ГАА – ГЦА – ААА – АЦГ.

Задание 2

ТГТ-АЦА-ТТА-ААА-ЦЦТ. Определить последовательность нуклеотидов иРНК и последовательность аминокислот в белке, который синтезируется под контролем этого гена.

Ответ: ДНК: ТГТ-АЦА-ТТА-ААА-ЦЦТ

иРНК: АЦА-УГУ-ААУ-УУУ-ГГА

Белок: тре---цис---асп---фен---гли.

В-2

Решите задачу 1:

Дан фрагмент двуцепочечной молекулы ДНК. Воспользовавшись таблицей генетического кода, определите структуру фрагмента белковой молекулы, кодируемой этим участком ДНК:

ААА – ТТТ – ГГГ – ЦЦЦ

ТТТ – ААА – ЦЦЦ – ГГГ.

Решение:

Так как иРНК синтезируется всегда только на одной цепи ДНК, которую на письме принято изображать как верхнюю, то

иРНК: УУУ – ААА – ЦЦЦ – ГГГ;

фрагмент белка, кодируемый верхней цепью: фен – лиз – про – гли.

Задание 2 : участок ДНК имеет следующую последовательность нуклеотидов:

ТГТ-АЦА-ТТА-ААА-ЦЦТ. Определить последовательность нуклеотидов и-РНК и последовательность аминокислот в белке, который синтезируется под контролем этого гена.

Ответ: ДНК: АГГ-ЦЦТ-ТАТ-ГГГ-ЦГА

иРНК: УЦЦ-ГГА-АУА-ЦЦЦ-ГЦУ

Белок: сер---гли---изо---про---ала

А теперь прослушаем интересные сообщения, которые Вы подготовили.

    «Интересные факты о гене»

    «Генетический код»

    «Транскрипция и трансляция»

VI .Подведение итогов урока.

1)Вывод по уроку: Одним из важнейших процессов, протекающих в клетке, является синтез белков. Каждая клетка содержит тысячи белков, в том числе и присущих только данному виду клеток. Так как в процессе жизнедеятельности все белки рано или поздно разрушаются, клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т. п. Кроме того, многие клетки изготовляют белки для нужд всего организма, например клетки желез внутренней секреции, выделяющие в кровь белковые гормоны. В таких клетках синтез белка идет особенно интенсивно. Синтез белка требует больших затрат энергии. Источником этой энергии, как и для всех клеточных процессов, является АТФ.

2)Оценить самостоятельную работу учащихся и их работу у доски. Так же оценить активность участников беседы и докладчиков.

V II . Домашнее задание:

Повторить § 2.13.

Разгадайте кроссворд:

1. Специфическая последовательность нуклеотидов, находящихся в начале каждого гена.

2. Переход последовательности нуклеотидов молекулы иРНК в последовательность АК молекулы белка.

3. Знак начала трансляции.

4. Носитель генетической информации, расположенный в клеточном ядре.

5. Свойство генетического кода, повышающее надёжность хранения и передачи генетической информации при делении клеток.

6. Участок ДНК, содержащий информацию о первичной структуре одного белка.

7. Последовательность из трёх расположенных друг за другом нуклеотидов ДНК.

8. Все рибосомы, синтезирующие белок на одной молекуле иРНК.

9. Процесс перевода информации, о последовательности АК в белке с «языка ДНК» на «язык РНК».

10. Кодон, не кодирующий АК, а только показывает, что синтез белка должен быть завершён.

11. Структура, где определяется последовательность АК в молекуле белка.

12. Важное свойство генетического кода, заключающееся в том что, один триплет всегда кодирует только одну АК.

13. «Знак препинания» в молекуле ДНК, указывающий на то, что синтез иРНК нужно прекратить.

14. Генетический код... для всех живых организмов от бактерий до человека.

- до 2 минут

-вступительное слово учителя

-35 минут

-10 минут

-учитель

-у доски 1 ученик

-ученики, записывают в тетради

-учитель

- с места

-слайд 1 и 2

-слайд 3

-слайд 4

-слайд 5

-слайд 6

-слайд 7 и 8

-слайд 9 и 10

-слайд 11 и 12

-слайд 13

-слайд 14

-слайд 15 и16

-слайд 17 и 18

-слайд 19 и 20

-логический переход

-слайд 21

-учитель

-25 минут

-учитель

-учитель

-слайд 22

-учитель

-слайд 23

-слайд 24

-слайд 25

-15 минут

слайд 27

-группа №1

-индивидуально на карточках

-группа № 2

-индивидуально на карточках

-30 минут

-заранее подготовленные

-слайд 29

-10 минут (1 уч.)

-10 минут (2 уч.)

-10 минут (3 уч.)

-5 минут

-учитель

-3минуты

-слайд 30

-на карточках

Воспроизведение и действие генов связаны с матричными процессами - синтезом макромолекул: ДНК, РНК, белков. Выше уже рассматривалась репликация как процесс, обеспечивающий воспроизведение генетической информации. Современная теория гена - достижение молекулярной генетики - всецело опирается на успехи биохимии в изучении матричных процессов. И напротив, метод генетического анализа вносит существенный вклад в изучение матричных процессов, которые сами находятся под генетическим контролем. Действие гена обеспечивает транскрипцию , или синтез РНК, и трансляцию , или синтез белка (рис. 5.23).

Рис. 5.23. Схема процесса транскрипции ДНК РНК-полимеразой и трансляции: а - общая схема транскрипции. Стрелка показывает направление, в котором ДНК-матрица движется через молекулу РНК-полимеразы; б - два этапа: транскрипция и трансляция

Процесс синтеза белка начинается с транскрипции ДНК (как рассматривалось выше). Следующий процесс - трансляция мРНК.

Трансляция мРНК - это синтез белка на рибосомах, направляемый матрицей мРНК. При этом информация переводится с четырехбуквенного алфавита нуклеиновых кислот на двадцатибуквенный алфавит аминокислотных последовательностей полипептидных цепей.

В этом процессе различают три стадии:

  • 1. Активация свободных аминокислот - образование аминоациладе- нилатов в результате взаимодействия аминокислот с АТФ под контролем ферментов, специфичных для каждой аминокислоты. Эти ферменты - ами- ноацил-тРНК-синтетазы - участвуют и в следующей стадии.
  • 2. Аминоацилирование тРНК - присоединение аминокислотных остатков к тРНК путем взаимодействия тРНК и комплекса аминоацил-тРНК- синтетазы с аминоациладенилатами. При этом каждый аминокислотный остаток присоединяется к своему специфическому классу тРНК.
  • 3. Собственно трансляция, или полимеризация аминокислотных остатков с образованием пептидных связей.

Таким образом, при трансляции последовательность расположения нуклеотидов в мРНК переводится в соответствующую, строго упорядоченную последовательность расположения аминокислот в молекуле синтезируемого белка.

Сигналом инициации трансляции у про- и эукариот служит кодон АУГ, если он расположен в начале мРНК. В этом случае его «узнает» специализированная инициирующая формилметиониновая (у бактерий) или метиониновая (у эукариот) тРНК. В остальных случаях кодон АУГ «читается» как метиониновый (см. табл. 5.4.). Сигналом инициации может также служить кодон ГУГ. Это взаимодействие происходит на рибосоме в ее аминоацильном центре (^-центре), располагающемся преимущественно на малой субъединице рибосомы.

Взаимодействие кодона АУГ информационной РНК, малой субъединицы рибосомы и формилметионил-тРНК образует комплекс инициации. Суть этого взаимодействия заключается в том, что к кодону АУГ на мРНК присоединяется своим антикодоном УАЦ тРНК, захватившая и несущая молекулу аминокислоты метионина (у бактерий инициаторной является тРНК, которая переносит формилметионин). Затем к этому комплексу, состоящему из малой субъединицы рибосомы (305), мРНК и тРНК, присоединяется большая субъединица рибосомы (505). В результате образуется полностью собранная рибосома, включающая одну молекулу мРНК и инициаторную тРНК с аминокислотой. В рибосоме имеются аминоацильный и пептидиль- ный центры.

Первая аминокислота (метионин) сначала попадает в аминоацильный центр. В процессе присоединения большей субъединицы рибосомы мРНК продвигается на один кодон, тРНК из аминоацильного центра перемещается в пептидильный центр. В аминоацильный центр поступает следующий кодон мРНК, который может соединиться с антикодоном следующей ами- ноацил-тРНК. С этого момента начинается вторая стадия трансляции - элонгация, в ходе которой многократно повторяется цикл присоединения молекул аминокислот к растущей полипептидной цепи. Так, в аминоациль- ный центр рибосомы поступает в соответствии с кодоном информационной РНК вторая молекула тРНК, несущая очередную аминокислоту. Эта тРНК своим антикодоном соединяется с комплементарным кодоном мРНК. Сразу же при помощи пептидилтрансферазы предшествующая аминокислота (метионин) соединяется своей карбоксильной группой (СООН) с аминогруппой (NH 2) вновь доставленной аминокислоты. Между ними образуется пептидная связь (-CO-NH-). При этом выделяется молекула воды:


В результате тРНК, доставившая метионин, освобождается, а в аминоацильном центре к тРНК оказывается присоединенным уже дипептид. Для дальнейшего осуществления процесса элонгации должен быть освобожден аминоацильный центр, что и происходит.

В результате процесса трансляции комплекс дипсптндил-тРНК продвигается из аминоацильного центра в пептидильный. Это происходит благодаря перемещению рибосомы на один кодон при участии фермента транслоказы и белкового фактора элонгации. Освободившаяся тРНК и кодон мРНК, который был связан с ней, выходят из рибосомы. Следующая тРНК доставляет в освободившийся аминоацильный центр аминокислоту в соответствии с поступившим туда кодоном. Эта аминокислота при помощи пептидной связи соединяется с предыдущей. При этом рибосома продвигается еще на один кодон, и процесс повторяется до тех пор, пока в аминоацильный центр нс поступит один из трех терминирующих кодонов (нонсенс-кодонов), т. е. УАА, УАГ или УГА.

После поступления в аминоацильный центр рибосомы терминирующего кодона наступает третий этап синтеза полипептида - терминация. Она начинается с присоединения к терминирующему кодону мРНК одного из белковых факторов терминации, что приводит к блокированию дальнейшей элонгации цепи. Терминация синтеза приводит к освобождению синтезированной полипептидной цепи и субъединиц рибосомы, которые затем диссоциируют и могут принять участие в синтезе следующей полипептидной цепи.

Весь процесс трансляции сопровождается расщеплением молекул ГТФ (гуанозинтрифосфата), причем необходимо участие дополнительных белковых факторов, специфичных для процессов инициации (факторов инициации), элонгации (факторов элонгации) и терминации (факторов терминации). Эти белки не являются интегральной частью рибосомы, а присоединяются к ней на определенных этапах трансляции. В общих чертах процесс трансляции одинаков у всех организмов.

Образующиеся при синтезе белка полипептидные цепи претерпевают постгрансляционные преобразования и в дальнейшем выполняют свои специфические функции. Первичная структура полипептида определяется последовательностью расположения в нем аминокислот. Полипептидные цепи самопроизвольно формируют определенную вторичную структуру, которая определяется природой боковых групп аминокислотных остатков (а-спираль, складчатый P-слой, случайный клубок). Все эти и другие структурные особенности определяют некоторую фиксированную трехмерную конфигурацию, которую называют третичной (или пространственной) структурой полипептида , отражающей способ укладки данной полипептидной цепи в трехмерном пространстве.

Белки могут состоять из одной или нескольких полипептидных цепей. Во втором случае их называют олигомерными белками. Для них характерна определенная четвертичная структура. Под этим термином подразумевают общую конфигурацию белка, возникшую при ассоциации всех входящих в ее состав полипептидных цепей. В частности, структурная модель человеческого гемоглобина включает в себя две a-цепи и две P-цепи, которые связаны между собой и образуют четвертичную белковую структуру.

Точность полипептидного синтеза зависит от правильности образования системы водородных связей между кодонами и антикодонами. До замыкания очередной пептидной связи с помощью рибосом осуществляется проверка правильности образования пары кодон-антикодон. Прямое свидетельство в пользу активной роли рибосом в контроле комплементар- ности кодон-антикодоновой связи - обнаружение мутаций, изменяющих рибосомные белки и таким образом влияющих на точность трансляции.

Сначала, установите последовательность этапов биосинтеза белка, начиная с транскрипции. Всю последовательность процессов, происходящих при синтезе белковых молекул, можно объединить в 2 этапа:

  1. Транскрипция.

  2. Трансляция.

Структурными единицами наследственной информации являются гены – участки молекулы ДНК, кодирующие синтез определенного белка. По химической организации материал наследственности и изменчивости про- и эукариот принципиально не отличается. Генетический материал в них представлен в молекуле ДНК, общим является также принцип записи наследственной информации и генетический код. Одни и те же аминокислоты у про — и эукариот шифруются одинаковыми кодонами.

Геном современных прокариотических клеток характеризуется относительно небольшими размерами, ДНК кишечной палочки имеет вид кольца, длиной около 1 мм. Она содержит 4 х 10 6 пар нуклеотидов, образующих около 4000 генов. В 1961 г. Ф. Жакоб и Ж. Моно открыли цистронную, или непрерывную организацию генов прокариот, которые полностью состоят из кодирующих нуклеотидных последовательностей, и они целиком реализуются в ходе синтеза белков. Наследственный материал молекулы ДНК прокариот располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты.Экспрессия- это функциональная активность генов, или выражение генов. Поэтому синтезированная с ДНК иРНК способна сразу выполнять функцию матрицы в процессе трансляции синтеза белка.

Геном эукариот содержит значительно больше наследственного материала. У человека общая длина ДНК в диплоидном наборе хромосом составляет около 174 см. Она содержит 3 х 10 9 пар нуклеотидов и включает до 100000 генов. В 1977 г. была обнаружена прерывистость в строении большинства генов эукариот, получивший название «мозаичный» ген. Для него характерны кодирующие нуклеотидные последовательности экзонные и интронные участки. Для синтеза белка используется только информация экзонов. Количество интронов варьирует в разных генах. Установлено,что ген овальбумина кур включает 7 интронов, а ген проколлагена млекопитающих – 50. Функции молчащей ДНК – интронов окончательно не выяснены. Предполагают, что они обеспечивают: 1) структурную организацию хроматина; 2) некоторые из них, очевидно, участвуют в регуляции экспрессии генов; 3) интроны можно считать запасом информации для изменчивости; 4) они могут играть защитную роль, принимая на себя действие мутагенов.

Транскрипция

Процесс переписывания информации в ядре клетки с участка молекулы ДНК на молекулу мРНК (иРНК) называется транскрипция (лат. Transcriptio – переписывание). Синтезируется первичный продукт гена- мРНК. Это первый этап белкового синтеза. На соответствующем участке ДНК фермент РНК–полимераза узнает знак начала транскрипции – промотр. Стартовой точкой считается первый нуклеотид ДНК, который включается ферментом в РНК-транскрипт. Как правило, кодирующие участки начинаются кодоном АУГ, иногда у бактерий используется ГУГ. Когда РНК-полимераза связывается с промотором, происходит локальное расплетание двойной спирали ДНК и копируется одна из цепей по принципу комплементарности. Синтезируется мРНК, скорость сборки её достигает 50 нуклеотидов в секунду. По мере движения РНК–полимеразы, растёт цепь мРНК, и когда фермент достигнет конца копирующего участка – терминатора , мРНК отходит от матрицы. Двойная спираль ДНК позади фермента восстанавливается.

Транскипция прокариот осуществляется в цитоплазме. В связи с тем, что ДНК целиком состоит из кодирующих нуклеотидных последовательностей, поэтому синтезированная мРНК сразу выполняет функцию матрицы для трансляции (см. выше).

Транскрипция мРНК у эукариот происходит в ядре. Она начинается синтезом больших по размерам молекул — предшественников (про-мРНК), называемых незрелой, или ядерной РНК.Первичный продукт гена- про-мРНК является точной копией транскрибированного участка ДНК, включает экзоны и интроны. Процесс формирования зрелых молекул РНК из предшественников называется процессингом . Созревание мРНК происходит путём сплайсинга – это вырезания ферментами рестриктаз интронов и соединение участков с транскрибируемыми последовательностями экзонов ферментами лигаз. (Рис.).Зрелая мРНК значительно короче молекул-предшественников про – мРНК, размеры интронов в них варьирует от 100 до 1000 нуклеотидов и более. На долю интронов приходится около 80% всей незрелой мРНК.

В настоящее время доказана возможность альтернативного сплайсинга, при котором из одного первичного транскрипта могут удалятся в разных его участках нуклеотидные последовательности и будут образовываться несколько зрелых мРНК. Данный вид сплайсинга характерен в системе генов иммуноглобулинов у млекопитающих, что даёт возможность формировать на основе одного транскрипта мРНК разные виды антител.

По завершению процессинга зрелая мРНК проходит отбор перед выходом из ядра. Установлено, что в цитоплазму попадает всего 5% зрелой мРНК, а остальная часть расщепляется в ядре.

Трансляция

Трансляция (лат. Translatio — передача, перенесение) — перевод информации, заключенной в последовательности нуклеотидов молекулы мРНК,в последовательность аминокислот полипептидной цепи (Рис. 10). Это второй этап белкового синтеза. Перенос зрелой мРНК через поры ядерной оболочки производят специальные белки, которые образуют комплекс с молекулой РНК. Кроме транспорта мРНК, эти белки защищают мРНК от повреждающего действия цитоплазматических ферментов. В процессе трансляции центральная роль принадлежит тРНК, они обеспечивают точное соответствие аминокислоты коду триплета мРНК. Процесс трансляции- декодирования происходит в рибосомах и осуществляется в направлении от 5 к 3 , Комплекс мРНК и рибосом называется полисомой.

В ходе трансляции можно выделить три фазы: инициацию, элонгацию и терминацию.

Инициация.

На этом этапе происходит сборка всего комплекса, участвующего в синтезе молекулы белка. Происходит объединение двух субъединиц рибосом на определённом участке мРНК, присоединение к ней первой аминоацил – тРНК и этим задаётся рамка считывания информации. В молекуле любой м-РНК есть участок, комплементарный р-РНК малой субединицы рибосомы и специфически ею управляемый. Рядом с ним находится инициирующий стартовый кодон АУГ, который кодирует аминокислоту метионин.Фаза инициации завершается образованием комплекса:рибосома, -мРНК- инициирующая аминоацил-тРНК.

Элонгация

— она включает все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. На рибосоме имеется два участка для связывания двух молекул т-РНК. В одном участке-пептидильном(П) находится первая т-РНК с аминокислотой метионин и с него начинается синтез любой молекулы белка. Во второй участок рибосомы- аминоацильный (А) поступает вторая молекула т-РНК и присоединяется к своему кодону. Между метионином и второй аминокислотой образуется пептидная связь. Вторая т-РНК перемещается вместе со своим кодоном м-РНК в пептидильный центр. Перемещение т-РНК с полипептидной цепочкой из аминоацильного центра в пептидильный сопровождается продвижением рибосомы по м-РНК на шаг, соответствующий одному кодону. Т-РНК, доставившая метионин, возвращается в цитоплазму, амноацильный центр освобождается. В него поступает новая т-РНК с аминокислотой, зашифрованной очередным кодоном. Между третьей и второй аминокислотами образуется пептидная связь и третья т-РНК вместе с кодоном м-РНК перемещается в пептидильный центр.Процесс элонгации, удлинения белковой цепи. Продолжается до тех пор, пока в рибосому не попадёт один из трёх кодонов, не кодирующих аминокислоты. Это кодон — терминатор и для него не существует соответствущей т-РНК, поэтому ни одна из т-РНК не может занять место в аминоацильном центре.

Терминация

– завершение синтеза полипептида. Она связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ, УГА), когда он будет входить в аминоацильный центр. К рибосоме присоединяется специальный фактор терминации, который способствует разъединению субъединиц рибосомы и освобождению синтезированной молекулы белка. К последней аминокислоте пептида присоединяется вода и её карбоксильный конец отделяется от т-РНК.

Сборка пептидной цепи осуществляется с большой скоростью. У бактерий при температуре 37°С она выражается в добавлении к полипептиду от 12 до 17 аминокислот в секунду. В эукариотических клетках к полипептиду добавляется две аминокислоты в одну секунду.

Синтезированная полипептидная цепь затем поступает в комплекс Гольджи, где завершается построение белковой молекулы (последовательно возникают вторая, третья, четвертая структуры). Здесь же происходит комплексование белковых молекул с жирами и углеводами.

Весь процесс биосинтеза белка представлен в виде схемы: ДНК ® про иРНК ® мРНК ® полипептидная цепь ® белок® комплексование белков и их преобразование в функционально активные молекулы.

Этапы реализации наследственной информации также протекают сходным образом: сначала она транскрибируется в нуклеотидную последовательность мРНК, а затем транслируется в аминокислотную последовательность полипептида на рибосомах с участием тРНК.

Транскрипция эукариот осуществляется под действием трех ядерных РНК-полимераз. РНК-полимераза 1 находится в ядрышках и отвечает за транскрипцию генов рРНК. РНК-полимераза 2 находится в ядерном соке и отвечает за синтез предшественника мРНК. РНК-полимераза 3 –небольшая фракция в ядерном соке, которая осуществляет синтез малых рРНК и тРНК. РНК-полимеразы специфически узнают нуклеотидную последовательность транскрипции-промотор. Эукариотическая мРНК вначале синтезируется в виде предшественницы (про- иРНК), на нее списывается информация с экзонов и интронов. Синтезированная мРНК обладает большими, чем необходимо для трансляции размерами и оказывается менее стабильной.

В процессе созревания молекулы мРНК с помощью ферментов рестриктаз вырезаются интроны, а с помощью ферментов – лигаз сшиваются экзоны. Созревание мРНК называется процессингом, сшивание экзонов называется сплайсингом. Таким образом, зрелая мРНК содержит только экзоны и она значительно короче её предшественницы – про- иРНК. Размеры интронов варьируют от 100 до 10000 нуклеотидов и более. На долю интонов приходится около 80% всей незрелой мРНК. В настоящее время доказана возможность альтернативного сплайсинга, при котором из одного первичного транскрипта могут удаляться в разных его участках нуклеотидные последовательности и будут образовываться несколько зрелых мРНК. Данный вид сплайсинга характерен в системе генов иммуноглобулинов у млекопитающих, что даёт возможность формировать на основе одного транскрипта мРНК разные виды антител. По завершению процессинга зрелая мРНК проходит отбор перед выходом в цитоплазму из ядра. Установлено, что попадает всего 5% зрелой мРНК, а остальная часть расщепляется в ядре. Преобразование первичных транскриптонов эукариотических генов, связанное с их экзон-интронной организацией, и в связи с переходом зрелой мРНК из ядра в цитоплазму, определяет особенности реализации генетической информации эукариот. Следовательно, мозаичный ген эукариот не является геном цистроном, так как не вся последовательность ДНК используется для синтеза белка.

Вам также будет интересно:

Восстания Жакерия: причины, события и последствия
ервоначальный успех в войне был на стороне Англии, одержавшей крупные победы над...
Механическое движение: равномерное и неравномерное
Раздел 1 МЕХАНИКА Глава 1: О с н о в ы к и н е м а т и к и Механическое движение....
Система мышления эдварда де боно
), после чего приступил к изучению медицины в Университете Мальты. Образование продолжил в...
Бедная лиза
В романах и повестях русских писателей до начала 19 века чаще всего прослеживаются сюжеты,...
Краткое содержание повести гроза островского
Далеко не всегда читатель может оценить роль изобразительных средств, прочитав только...